2.2.158 Problems 15701 to 15800

Table 2.317: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15701

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[_separable]

0.864

15702

\[ {}y^{\prime }+\sqrt {x^{2}+1}\, y = 0 \]

[_separable]

0.960

15703

\[ {}y^{\prime } \cos \left (x \right )+y = 0 \]

[_separable]

1.208

15704

\[ {}y^{\prime }+\sqrt {2 x^{2}+1}\, y = 0 \]

[_separable]

0.964

15705

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.753

15706

\[ {}y^{\prime \prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.952

15707

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.960

15708

\[ {}\sqrt {x}\, y^{\prime \prime }+y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.799

15709

\[ {}\left (x -3\right )^{2} y^{\prime \prime }-2 \left (x -3\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.477

15710

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.765

15711

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-5 \left (x -1\right ) y^{\prime }+9 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.618

15712

\[ {}\left (x +2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.563

15713

\[ {}3 \left (x -2\right )^{2} y^{\prime \prime }-4 \left (x -5\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.648

15714

\[ {}\left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.625

15715

\[ {}x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{x -2}+\frac {2 y}{x +2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.080

15716

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.675

15717

\[ {}\left (-x^{4}+x^{3}\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+827 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.485

15718

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x -3}+\frac {y}{x -4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.764

15719

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (x -4\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.081

15720

\[ {}y^{\prime \prime }+\left (\frac {1}{x}-\frac {1}{3}\right ) y^{\prime }+\left (\frac {1}{x}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.782

15721

\[ {}\left (4 x^{2}-1\right ) y^{\prime \prime }+\left (4-\frac {2}{x}\right ) y^{\prime }+\frac {\left (-x^{2}+1\right ) y}{x^{2}+1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.462

15722

\[ {}\left (x^{2}+4\right )^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.586

15723

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.764

15724

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.772

15725

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x -4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.183

15726

\[ {}\left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 y^{\prime } x +10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.862

15727

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\frac {y}{1-x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.823

15728

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

[_Lienard]

0.628

15729

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y = 0 \]

[_Bessel]

1.112

15730

\[ {}2 x^{2} y^{\prime \prime }+\left (-2 x^{3}+5 x \right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.842

15731

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.840

15732

\[ {}\left (-3 x^{3}+3 x^{2}\right ) y^{\prime \prime }-\left (5 x^{2}+4 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.886

15733

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

[_Laguerre]

1.171

15734

\[ {}4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.802

15735

\[ {}x^{2} y^{\prime \prime }+\left (-x^{4}+x \right ) y^{\prime }+3 x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.600

15736

\[ {}\left (9 x^{3}+9 x^{2}\right ) y^{\prime \prime }+\left (27 x^{2}+9 x \right ) y^{\prime }+\left (8 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.836

15737

\[ {}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.137

15738

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x +2}+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.734

15739

\[ {}4 y^{\prime \prime }+\frac {\left (4 x -3\right ) y}{\left (x -1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.852

15740

\[ {}\left (x -3\right )^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.914

15741

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (-x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.838

15742

\[ {}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.862

15743

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

[_Lienard]

0.626

15744

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.010

15745

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+9 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.846

15746

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } x +\left (4 x^{3}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.267

15747

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.792

15748

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.241

15749

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.924

15750

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.944

15751

\[ {}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.140

15752

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +3 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.944

15753

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.773

15754

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

[_Lienard]

0.576

15755

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

[_Laguerre]

1.181

15756

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x -4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.178

15757

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=1-2 x \end {array}\right ] \]

system_of_ODEs

0.642

15758

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-3 y \\ y^{\prime }=6 x-7 y \end {array}\right ] \]

system_of_ODEs

0.435

15759

\[ {}\left [\begin {array}{c} t x^{\prime }+2 x=15 y \\ t y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.061

15760

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=5 x-2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.614

15761

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=8 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.536

15762

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+2 y \\ y^{\prime }=3 x-y \end {array}\right ] \]
i.c.

system_of_ODEs

0.539

15763

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=5 x-2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.599

15764

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=2 x \end {array}\right ] \]

system_of_ODEs

0.388

15765

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=-2 x \end {array}\right ] \]

system_of_ODEs

0.424

15766

\[ {}\left [\begin {array}{c} x^{\prime }=-2 y \\ y^{\prime }=8 x \end {array}\right ] \]

system_of_ODEs

0.451

15767

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-13 y \\ y^{\prime }=x \end {array}\right ] \]
i.c.

system_of_ODEs

0.608

15768

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+2 y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.501

15769

\[ {}\left [\begin {array}{c} x^{\prime }=8 x+2 y-17 \\ y^{\prime }=4 x+y-13 \end {array}\right ] \]
i.c.

system_of_ODEs

0.689

15770

\[ {}\left [\begin {array}{c} x^{\prime }=8 x+2 y+7 \,{\mathrm e}^{2 t} \\ y^{\prime }=4 x+y-7 \,{\mathrm e}^{2 t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.567

15771

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+3 y-6 \,{\mathrm e}^{3 t} \\ y^{\prime }=x+6 y+2 \,{\mathrm e}^{3 t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.573

15772

\[ {}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=4 x+24 t \end {array}\right ] \]
i.c.

system_of_ODEs

0.549

15773

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-13 y \\ y^{\prime }=x+19 \cos \left (4 t \right )-13 \sin \left (4 t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

1.424

15774

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+3 y+5 \operatorname {Heaviside}\left (t -2\right ) \\ y^{\prime }=x+6 y+17 \operatorname {Heaviside}\left (t -2\right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.642

15775

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=8 x+y \end {array}\right ] \]

system_of_ODEs

0.411

15776

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-5 y \\ y^{\prime }=3 x-7 y \end {array}\right ] \]

system_of_ODEs

0.612

15777

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-5 y+4 \\ y^{\prime }=3 x-7 y+5 \end {array}\right ] \]

system_of_ODEs

0.886

15778

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+y \\ y^{\prime }=6 x+2 y \end {array}\right ] \]

system_of_ODEs

0.398

15779

\[ {}\left [\begin {array}{c} x^{\prime }=x y-6 y \\ y^{\prime }=x-y-5 \end {array}\right ] \]

system_of_ODEs

0.054

15780

\[ {}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=2 x-y \end {array}\right ] \]

system_of_ODEs

0.392

15781

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.362

15782

\[ {}y y^{\prime }+y^{4} = \sin \left (x \right ) \]

[‘y=_G(x,y’)‘]

2.819

15783

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

0.164

15784

\[ {}{y^{\prime }}^{2}+y = 0 \]

[_quadrature]

0.522

15785

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.500

15786

\[ {}x {y^{\prime \prime }}^{2}+2 y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

0.104

15787

\[ {}x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

[NONE]

0.726

15788

\[ {}2 x -1-y^{\prime } = 0 \]

[_quadrature]

0.482

15789

\[ {}2 x -y-y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.277

15790

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

1.413

15791

\[ {}y^{\prime }+x y = 0 \]

[_separable]

1.829

15792

\[ {}y^{\prime }+y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

1.291

15793

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

1.071

15794

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.975

15795

\[ {}x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

[[_2nd_order, _missing_x]]

1.226

15796

\[ {}x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.701

15797

\[ {}y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

[[_2nd_order, _missing_x]]

1.931

15798

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

0.063

15799

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

0.066

15800

\[ {}x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y = 0 \]

[[_Emden, _Fowler]]

1.114