2.2.157 Problems 15601 to 15700

Table 2.315: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15601

\[ {}y^{\prime \prime }+8 y^{\prime }+7 y = 165 \,{\mathrm e}^{4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.275

15602

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.270

15603

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} t^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.234

15604

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.307

15605

\[ {}y^{\prime \prime }+8 y^{\prime }+17 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.278

15606

\[ {}y^{\prime \prime } = {\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.282

15607

\[ {}y^{\prime \prime }-4 y^{\prime }+40 y = 122 \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.429

15608

\[ {}y^{\prime \prime }-9 y = 24 \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.265

15609

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.425

15610

\[ {}y^{\prime \prime }+4 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.266

15611

\[ {}y^{\prime \prime }+4 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.276

15612

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.372

15613

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.319

15614

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.328

15615

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.251

15616

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.287

15617

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.223

15618

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.284

15619

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.250

15620

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[_quadrature]

0.406

15621

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[_quadrature]

0.418

15622

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.244

15623

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.267

15624

\[ {}y^{\prime \prime }+9 y = \operatorname {Heaviside}\left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.443

15625

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[_quadrature]

0.477

15626

\[ {}y^{\prime \prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[[_2nd_order, _quadrature]]

0.340

15627

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.274

15628

\[ {}y^{\prime } = 3 \delta \left (t -2\right ) \]
i.c.

[_quadrature]

0.426

15629

\[ {}y^{\prime } = \delta \left (t -2\right )-\delta \left (t -4\right ) \]
i.c.

[_quadrature]

0.463

15630

\[ {}y^{\prime \prime } = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.229

15631

\[ {}y^{\prime \prime } = \delta \left (t -1\right )-\delta \left (t -4\right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.279

15632

\[ {}y^{\prime }+2 y = 4 \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.467

15633

\[ {}y^{\prime \prime }+y = \delta \left (t \right )+\delta \left (t -\pi \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.830

15634

\[ {}y^{\prime \prime }+y = -2 \delta \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.316

15635

\[ {}y^{\prime }+3 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.488

15636

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t \right ) \]

[[_2nd_order, _missing_y]]

0.185

15637

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _missing_y]]

0.462

15638

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.433

15639

\[ {}y^{\prime \prime }-16 y = \delta \left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

15640

\[ {}y^{\prime \prime }+y = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.146

15641

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.221

15642

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.564

15643

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \delta \left (t -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.398

15644

\[ {}y^{\prime \prime }-12 y^{\prime }+45 y = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.243

15645

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right ) \]
i.c.

[[_3rd_order, _missing_y]]

1.358

15646

\[ {}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

0.361

15647

\[ {}y^{\prime }-2 y = 0 \]

[_quadrature]

0.560

15648

\[ {}y^{\prime }-2 x y = 0 \]

[_separable]

0.642

15649

\[ {}y^{\prime }+\frac {2 y}{2 x -1} = 0 \]

[_separable]

0.597

15650

\[ {}\left (x -3\right ) y^{\prime }-2 y = 0 \]

[_separable]

0.566

15651

\[ {}\left (x^{2}+1\right ) y^{\prime }-2 x y = 0 \]

[_separable]

0.575

15652

\[ {}y^{\prime }+\frac {y}{x -1} = 0 \]

[_separable]

0.588

15653

\[ {}y^{\prime }+\frac {y}{x -1} = 0 \]

[_separable]

0.659

15654

\[ {}\left (1-x \right ) y^{\prime }-2 y = 0 \]

[_separable]

0.619

15655

\[ {}\left (-x^{3}+2\right ) y^{\prime }-3 x^{2} y = 0 \]

[_separable]

0.666

15656

\[ {}\left (-x^{3}+2\right ) y^{\prime }+3 x^{2} y = 0 \]

[_separable]

0.586

15657

\[ {}\left (x +1\right ) y^{\prime }-x y = 0 \]

[_separable]

0.612

15658

\[ {}\left (x +1\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

0.615

15659

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.546

15660

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.484

15661

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

0.535

15662

\[ {}y^{\prime \prime }-3 x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.440

15663

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }-5 y^{\prime } x -3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.593

15664

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.572

15665

\[ {}y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.480

15666

\[ {}\left (x^{2}-6 x \right ) y^{\prime \prime }+4 \left (x -3\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.747

15667

\[ {}y^{\prime \prime }+\left (x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.562

15668

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.593

15669

\[ {}y^{\prime \prime }-2 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.519

15670

\[ {}y^{\prime \prime }-y^{\prime } x -2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.562

15671

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\lambda y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.618

15672

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\lambda y = 0 \]

[_Gegenbauer]

0.612

15673

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.569

15674

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.422

15675

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.526

15676

\[ {}\sin \left (x \right ) y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.630

15677

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.468

15678

\[ {}y^{\prime \prime }-\sin \left (x \right ) y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.716

15679

\[ {}y^{\prime \prime }-y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.155

15680

\[ {}y^{\prime }+\cos \left (y\right ) = 0 \]

[_quadrature]

0.366

15681

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[_separable]

0.705

15682

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

[_separable]

0.778

15683

\[ {}\sin \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10.201

15684

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.041

15685

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

49.930

15686

\[ {}{\mathrm e}^{3 x} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\frac {2 y}{x^{2}+4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.421

15687

\[ {}y^{\prime \prime }+\frac {\left ({\mathrm e}^{x}+1\right ) y}{1-{\mathrm e}^{x}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.427

15688

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+\left (x^{2}+x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.609

15689

\[ {}x y^{\prime \prime }+\left (1-{\mathrm e}^{x}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.731

15690

\[ {}\sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.865

15691

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

[_separable]

0.671

15692

\[ {}y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

[_separable]

0.670

15693

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

0.733

15694

\[ {}y^{\prime }+y \ln \left (x \right ) = 0 \]

[_separable]

0.664

15695

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.763

15696

\[ {}y^{\prime \prime }+3 y^{\prime } x -y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.736

15697

\[ {}x y^{\prime \prime }-3 y^{\prime } x +y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.730

15698

\[ {}y^{\prime \prime }+y \ln \left (x \right ) = 0 \]

[_Titchmarsh]

0.704

15699

\[ {}\sqrt {x}\, y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.782

15700

\[ {}y^{\prime \prime }+\left (6 x^{2}+2 x +1\right ) y^{\prime }+\left (2+12 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.645