2.2.138 Problems 13701 to 13800

Table 2.277: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13701

\[ {}x^{\prime \prime }+\left (5 x^{4}-6 x^{2}\right ) x^{\prime }+x^{3} = 0 \]

[[_2nd_order, _missing_x]]

3.648

13702

\[ {}x^{\prime \prime }+\left (x^{2}+1\right ) x^{\prime }+x^{3} = 0 \]

[[_2nd_order, _missing_x]]

1.793

13703

\[ {}\left [\begin {array}{c} x^{\prime }=x-x^{2} \\ y^{\prime }=2 y-y^{2} \end {array}\right ] \]

system_of_ODEs

0.055

13704

\[ {}x^{\prime } = \sin \left (t \right )+\cos \left (t \right ) \]

[_quadrature]

0.536

13705

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]

[_quadrature]

0.496

13706

\[ {}u^{\prime } = 4 t \ln \left (t \right ) \]

[_quadrature]

0.436

13707

\[ {}z^{\prime } = x \,{\mathrm e}^{-2 x} \]

[_quadrature]

0.514

13708

\[ {}T^{\prime } = {\mathrm e}^{-t} \sin \left (2 t \right ) \]

[_quadrature]

0.579

13709

\[ {}x^{\prime } = \sec \left (t \right )^{2} \]
i.c.

[_quadrature]

0.830

13710

\[ {}y^{\prime } = x -\frac {1}{3} x^{3} \]
i.c.

[_quadrature]

0.637

13711

\[ {}x^{\prime } = 2 \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

0.816

13712

\[ {}x V^{\prime } = x^{2}+1 \]
i.c.

[_quadrature]

0.775

13713

\[ {}x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

1.810

13714

\[ {}x^{\prime } = -x+1 \]

[_quadrature]

1.119

13715

\[ {}x^{\prime } = x \left (2-x\right ) \]

[_quadrature]

2.067

13716

\[ {}x^{\prime } = \left (1+x\right ) \left (2-x\right ) \sin \left (x\right ) \]

[_quadrature]

5.177

13717

\[ {}x^{\prime } = -x \left (-x+1\right ) \left (2-x\right ) \]

[_quadrature]

214.192

13718

\[ {}x^{\prime } = x^{2}-x^{4} \]

[_quadrature]

1.615

13719

\[ {}x^{\prime } = t^{3} \left (-x+1\right ) \]
i.c.

[_separable]

1.654

13720

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

3.763

13721

\[ {}x^{\prime } = t^{2} x \]

[_separable]

1.646

13722

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

1.271

13723

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}} y^{2} \]

[_separable]

1.831

13724

\[ {}x^{\prime }+p x = q \]

[_quadrature]

0.646

13725

\[ {}y^{\prime } x = k y \]

[_separable]

1.235

13726

\[ {}i^{\prime } = p \left (t \right ) i \]

[_separable]

1.040

13727

\[ {}x^{\prime } = \lambda x \]

[_quadrature]

0.682

13728

\[ {}m v^{\prime } = -m g +k v^{2} \]

[_quadrature]

0.760

13729

\[ {}x^{\prime } = k x-x^{2} \]
i.c.

[_quadrature]

1.552

13730

\[ {}x^{\prime } = -x \left (k^{2}+x^{2}\right ) \]
i.c.

[_quadrature]

10.395

13731

\[ {}y^{\prime }+\frac {y}{x} = x^{2} \]

[_linear]

1.503

13732

\[ {}x^{\prime }+t x = 4 t \]
i.c.

[_separable]

2.092

13733

\[ {}z^{\prime } = z \tan \left (y \right )+\sin \left (y \right ) \]

[_linear]

1.655

13734

\[ {}y^{\prime }+{\mathrm e}^{-x} y = 1 \]
i.c.

[_linear]

1.231

13735

\[ {}x^{\prime }+x \tanh \left (t \right ) = 3 \]

[_linear]

1.263

13736

\[ {}y^{\prime }+2 y \cot \left (x \right ) = 5 \]
i.c.

[_linear]

1.673

13737

\[ {}x^{\prime }+5 x = t \]

[[_linear, ‘class A‘]]

1.240

13738

\[ {}x^{\prime }+\left (a +\frac {1}{t}\right ) x = b \]
i.c.

[_linear]

1.064

13739

\[ {}T^{\prime } = -k \left (T-\mu -a \cos \left (\omega \left (t -\phi \right )\right )\right ) \]

[[_linear, ‘class A‘]]

1.533

13740

\[ {}2 x y-\sec \left (x \right )^{2}+\left (x^{2}+2 y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

4.756

13741

\[ {}1+y \,{\mathrm e}^{x}+x \,{\mathrm e}^{x} y+\left (x \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \]

[_linear]

1.720

13742

\[ {}\left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }+\sin \left (y\right )-y \sin \left (x \right ) = 0 \]

[_exact]

28.708

13743

\[ {}{\mathrm e}^{x} \sin \left (y\right )+y+\left ({\mathrm e}^{x} \cos \left (y\right )+x +{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

2.366

13744

\[ {}{\mathrm e}^{-y} \sec \left (x \right )+2 \cos \left (x \right )-{\mathrm e}^{-y} y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.783

13745

\[ {}V^{\prime }\left (x \right )+2 y y^{\prime } = 0 \]

[_separable]

0.571

13746

\[ {}\left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b = 0 \]

[_separable]

1.351

13747

\[ {}x y+y^{2}+x^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.536

13748

\[ {}x^{\prime } = \frac {x^{2}+t \sqrt {t^{2}+x^{2}}}{t x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

34.309

13749

\[ {}x^{\prime } = k x-x^{2} \]

[_quadrature]

1.289

13750

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.399

13751

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.495

13752

\[ {}z^{\prime \prime }-4 z^{\prime }+13 z = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.838

13753

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.643

13754

\[ {}y^{\prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.332

13755

\[ {}\theta ^{\prime \prime }+4 \theta = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.910

13756

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.775

13757

\[ {}2 z^{\prime \prime }+7 z^{\prime }-4 z = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.661

13758

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.499

13759

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.382

13760

\[ {}4 x^{\prime \prime }-20 x^{\prime }+21 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.689

13761

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.652

13762

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.861

13763

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.511

13764

\[ {}y^{\prime \prime }+\omega ^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.879

13765

\[ {}x^{\prime \prime }-4 x = t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.309

13766

\[ {}x^{\prime \prime }-4 x^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

2.226

13767

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 3 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1.288

13768

\[ {}x^{\prime \prime }+x^{\prime }-2 x = {\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

1.338

13769

\[ {}x^{\prime \prime }+2 x^{\prime }+x = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1.356

13770

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\alpha t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.364

13771

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.457

13772

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

4.241

13773

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18.445

13774

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = {\mathrm e}^{-2 t} \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7.271

13775

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = {\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

1.371

13776

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.480

13777

\[ {}x^{\prime \prime }+4 x = 289 t \,{\mathrm e}^{t} \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.703

13778

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\alpha t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.805

13779

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\omega t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.695

13780

\[ {}x^{\prime \prime \prime }-6 x^{\prime \prime }+11 x^{\prime }-6 x = {\mathrm e}^{-t} \]

[[_3rd_order, _with_linear_symmetries]]

0.114

13781

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y = \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.137

13782

\[ {}x^{\prime \prime \prime \prime }-4 x^{\prime \prime \prime }+8 x^{\prime \prime }-8 x^{\prime }+4 x = \sin \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.160

13783

\[ {}x^{\prime \prime \prime \prime }-5 x^{\prime \prime }+4 x = {\mathrm e}^{t} \]

[[_high_order, _with_linear_symmetries]]

0.119

13784

\[ {}t^{2} y^{\prime \prime }-\left (t^{2}+2 t \right ) y^{\prime }+\left (t +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.323

13785

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.328

13786

\[ {}\left (t \cos \left (t \right )-\sin \left (t \right )\right ) x^{\prime \prime }-x^{\prime } t \sin \left (t \right )-x \sin \left (t \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.514

13787

\[ {}\left (-t^{2}+t \right ) x^{\prime \prime }+\left (-t^{2}+2\right ) x^{\prime }+\left (2-t \right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.334

13788

\[ {}y^{\prime \prime }-y^{\prime } x +y = 0 \]

[_Hermite]

0.327

13789

\[ {}\tan \left (t \right ) x^{\prime \prime }-3 x^{\prime }+\left (\tan \left (t \right )+3 \cot \left (t \right )\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.319

13790

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.248

13791

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.311

13792

\[ {}y^{\prime \prime }+4 y = \cot \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.478

13793

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.929

13794

\[ {}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right ) \]

[[_2nd_order, _missing_y]]

3.025

13795

\[ {}\left (\tan \left (x \right )^{2}-1\right ) y^{\prime \prime }-4 \tan \left (x \right )^{3} y^{\prime }+2 y \sec \left (x \right )^{4} = \left (\tan \left (x \right )^{2}-1\right ) \left (1-2 \sin \left (x \right )^{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.545

13796

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.954

13797

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.917

13798

\[ {}t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x = 0 \]
i.c.

[[_Emden, _Fowler]]

4.337

13799

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }-x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1.639

13800

\[ {}x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z = 0 \]
i.c.

[[_Emden, _Fowler]]

3.924