2.2.137 Problems 13601 to 13700

Table 2.275: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13601

\[ {}2 x y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.140

13602

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.711

13603

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}-3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.133

13604

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-2 x-4 y={\mathrm e}^{t} \\ x^{\prime }+y^{\prime }-y={\mathrm e}^{4 t} \end {array}\right ] \]

system_of_ODEs

0.219

13605

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x=-2 t \\ x^{\prime }+y^{\prime }-3 x-y=t^{2} \end {array}\right ] \]

system_of_ODEs

0.183

13606

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x-3 y={\mathrm e}^{t} \\ x^{\prime }+y^{\prime }+x={\mathrm e}^{3 t} \end {array}\right ] \]

system_of_ODEs

0.173

13607

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x-2 y=2 \,{\mathrm e}^{t} \\ x^{\prime }+y^{\prime }-3 x-4 y={\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.109

13608

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }-x-y={\mathrm e}^{-t} \\ x^{\prime }+2 x+y^{\prime }+y={\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.655

13609

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }-3 x-y=t \\ x^{\prime }+y^{\prime }-4 x-y={\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.472

13610

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x-6 y={\mathrm e}^{3 t} \\ x^{\prime }+2 y^{\prime }-2 x-6 y=t \end {array}\right ] \]

system_of_ODEs

0.633

13611

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x-3 y=3 t \\ x^{\prime }+2 y^{\prime }-2 x-3 y=1 \end {array}\right ] \]

system_of_ODEs

0.622

13612

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }+2 y=\sin \left (t \right ) \\ x^{\prime }+y^{\prime }-x-y=0 \end {array}\right ] \]

system_of_ODEs

0.230

13613

\[ {}\left [\begin {array}{c} x^{\prime }-y^{\prime }-2 x+4 y=t \\ x^{\prime }+y^{\prime }-x-y=1 \end {array}\right ] \]

system_of_ODEs

0.485

13614

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }+x+5 y=4 t \\ x^{\prime }+y^{\prime }+2 x+2 y=2 \end {array}\right ] \]

system_of_ODEs

0.460

13615

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x+5 y=t^{2} \\ x^{\prime }+2 y^{\prime }-2 x+4 y=2 t +1 \end {array}\right ] \]

system_of_ODEs

1.388

13616

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }+x+y=t^{2}+4 t \\ x^{\prime }+y^{\prime }+2 x+2 y=2 t^{2}-2 t \end {array}\right ] \]

system_of_ODEs

0.480

13617

\[ {}\left [\begin {array}{c} 3 x^{\prime }+2 y^{\prime }-x+y=t -1 \\ x^{\prime }+y^{\prime }-x=t +2 \end {array}\right ] \]

system_of_ODEs

0.611

13618

\[ {}\left [\begin {array}{c} 2 x^{\prime }+4 y^{\prime }+x-y=3 \,{\mathrm e}^{t} \\ x^{\prime }+y^{\prime }+2 x+2 y={\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.499

13619

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }-x-y=-2 t \\ x^{\prime }+y^{\prime }+x-y=t^{2} \end {array}\right ] \]

system_of_ODEs

0.472

13620

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }-x-y=1 \\ x^{\prime }+y^{\prime }+2 x-y=t \end {array}\right ] \]

system_of_ODEs

0.460

13621

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+4 y \\ y^{\prime }=2 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.513

13622

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+3 y \\ y^{\prime }=4 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.541

13623

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+2 y+5 t \\ y^{\prime }=3 x+4 y+17 t \end {array}\right ] \]

system_of_ODEs

0.499

13624

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-2 y \\ y^{\prime }=4 x-y \end {array}\right ] \]

system_of_ODEs

0.398

13625

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-y \\ y^{\prime }=3 x+y \end {array}\right ] \]

system_of_ODEs

0.408

13626

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+7 y \\ y^{\prime }=3 x+2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.572

13627

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+y \\ y^{\prime }=7 x+4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.607

13628

\(\left [\begin {array}{cc} 1 & 2 \\ 3 & 2 \end {array}\right ]\)

Eigenvectors

0.144

13629

\(\left [\begin {array}{cc} 3 & 2 \\ 6 & -1 \end {array}\right ]\)

Eigenvectors

0.149

13630

\(\left [\begin {array}{cc} 3 & 1 \\ 12 & 2 \end {array}\right ]\)

Eigenvectors

0.150

13631

\(\left [\begin {array}{cc} -2 & 7 \\ 3 & 2 \end {array}\right ]\)

Eigenvectors

0.148

13632

\(\left [\begin {array}{cc} 3 & 4 \\ 5 & 2 \end {array}\right ]\)

Eigenvectors

0.150

13633

\(\left [\begin {array}{cc} 3 & -5 \\ -4 & 2 \end {array}\right ]\)

Eigenvectors

0.141

13634

\(\left [\begin {array}{ccc} 1 & 1 & -1 \\ 2 & 3 & -4 \\ 4 & 1 & -4 \end {array}\right ]\)

Eigenvectors

0.241

13635

\(\left [\begin {array}{ccc} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & -6 & 6 \end {array}\right ]\)

Eigenvectors

0.248

13636

\(\left [\begin {array}{ccc} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end {array}\right ]\)

Eigenvectors

0.231

13637

\(\left [\begin {array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end {array}\right ]\)

Eigenvectors

0.218

13638

\(\left [\begin {array}{ccc} 1 & 3 & -6 \\ 0 & 2 & 2 \\ 0 & -1 & 5 \end {array}\right ]\)

Eigenvectors

0.218

13639

\(\left [\begin {array}{ccc} -5 & -12 & 6 \\ 1 & 5 & -1 \\ -7 & -10 & 8 \end {array}\right ]\)

Eigenvectors

0.245

13640

\(\left [\begin {array}{ccc} -2 & 5 & 5 \\ -1 & 4 & 5 \\ 3 & -3 & 2 \end {array}\right ]\)

Eigenvectors

0.243

13641

\(\left [\begin {array}{ccc} -2 & 6 & -18 \\ 12 & -23 & 66 \\ 5 & -10 & 29 \end {array}\right ]\)

Eigenvectors

0.241

13642

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-z \\ y^{\prime }=2 x+3 y-4 z \\ z^{\prime }=4 x+y-4 z \end {array}\right ] \]

system_of_ODEs

0.508

13643

\[ {}\left [\begin {array}{c} x^{\prime }=x-y-z \\ y^{\prime }=x+3 y+z \\ z^{\prime }=-3 x-6 y+6 z \end {array}\right ] \]

system_of_ODEs

0.493

13644

\[ {}y^{\prime }-y = {\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

0.422

13645

\[ {}y^{\prime }+y = 2 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.447

13646

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.217

13647

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.257

13648

\[ {}y^{\prime \prime }+4 y = 8 \]
i.c.

[[_2nd_order, _missing_x]]

0.299

13649

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.303

13650

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 18 \,{\mathrm e}^{-t} \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

13651

\[ {}y^{\prime \prime }+2 y^{\prime }+y = t \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.273

13652

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 4 t \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.258

13653

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 9 t \,{\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.283

13654

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 20 \sin \left (t \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.367

13655

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 36 t \,{\mathrm e}^{4 t} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.324

13656

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0<t <4 \\ 0 & 4<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.537

13657

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \left \{\begin {array}{cc} 6 & 0<t <2 \\ 0 & 2<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.612

13658

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0<t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.565

13659

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \left \{\begin {array}{cc} 3 & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.313

13660

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} -4 t +8 \pi & 0<t <2 \pi \\ 0 & 2<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.766

13661

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <\pi \\ \pi & \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.563

13662

\[ {}t x^{\prime \prime }-2 x^{\prime }+9 t^{5} x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.315

13663

\[ {}t^{3} x^{\prime \prime \prime }-3 t^{2} x^{\prime \prime }+6 t x^{\prime }-6 x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.123

13664

\[ {}\left (t^{3}-2 t^{2}\right ) x^{\prime \prime }-\left (t^{3}+2 t^{2}-6 t \right ) x^{\prime }+\left (3 t^{2}-6\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.416

13665

\[ {}t^{3} x^{\prime \prime \prime }-\left (t +3\right ) t^{2} x^{\prime \prime }+2 t \left (t +3\right ) x^{\prime }-2 \left (t +3\right ) x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.066

13666

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+3 x = 0 \]

[[_Emden, _Fowler]]

2.421

13667

\[ {}\left (2 t +1\right ) x^{\prime \prime }+t^{3} x^{\prime }+x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.795

13668

\[ {}t^{2} x^{\prime \prime }+\left (2 t^{3}+7 t \right ) x^{\prime }+\left (8 t^{2}+8\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.299

13669

\[ {}t^{3} x^{\prime \prime }-\left (t^{3}+2 t^{2}-t \right ) x^{\prime }+\left (t^{2}+t -1\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.448

13670

\[ {}t^{3} x^{\prime \prime }+3 t^{2} x^{\prime }+x = 0 \]

[[_Emden, _Fowler]]

0.924

13671

\[ {}\sin \left (t \right ) x^{\prime \prime }+\cos \left (t \right ) x^{\prime }+2 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.661

13672

\[ {}\frac {\left (1+t \right ) x^{\prime \prime }}{t}-\frac {x^{\prime }}{t^{2}}+\frac {x}{t^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.162

13673

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.240

13674

\[ {}\left (t^{4}+t^{2}\right ) x^{\prime \prime }+2 t^{3} x^{\prime }+3 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.969

13675

\[ {}x^{\prime \prime }-\tan \left (t \right ) x^{\prime }+x = 0 \]

[_Lienard]

1.200

13676

\[ {}f \left (t \right ) x^{\prime \prime }+x g \left (t \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.283

13677

\[ {}x^{\prime \prime }+\left (1+t \right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.563

13678

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.930

13679

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.943

13680

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.919

13681

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.023

13682

\[ {}x y^{\prime \prime }+y^{\prime }+\frac {\lambda y}{x} = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.735

13683

\[ {}x y^{\prime \prime }+y^{\prime }+\frac {\lambda y}{x} = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.705

13684

\[ {}2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }+\frac {\lambda y}{x^{2}+1} = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.954

13685

\[ {}-\frac {6 y^{\prime } x}{\left (3 x^{2}+1\right )^{2}}+\frac {y^{\prime \prime }}{3 x^{2}+1}+\lambda \left (3 x^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.457

13686

\[ {}\left [\begin {array}{c} x^{\prime }=x+3 y \\ y^{\prime }=3 x+y \end {array}\right ] \]

system_of_ODEs

0.397

13687

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+2 y \\ y^{\prime }=x+2 y \end {array}\right ] \]

system_of_ODEs

0.414

13688

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+4 y \\ y^{\prime }=3 x+2 y \end {array}\right ] \]

system_of_ODEs

0.424

13689

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+5 y \\ y^{\prime }=x-2 y \end {array}\right ] \]

system_of_ODEs

0.411

13690

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-4 y \\ y^{\prime }=2 x-2 y \end {array}\right ] \]

system_of_ODEs

0.455

13691

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=4 x+5 y \end {array}\right ] \]

system_of_ODEs

0.497

13692

\[ {}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=x+5 y \end {array}\right ] \]

system_of_ODEs

0.588

13693

\[ {}\left [\begin {array}{c} x^{\prime }=x+7 y \\ y^{\prime }=3 x+5 y \end {array}\right ] \]

system_of_ODEs

0.416

13694

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=3 x-y \end {array}\right ] \]

system_of_ODEs

0.410

13695

\[ {}\left [\begin {array}{c} x^{\prime }=a x+b y \\ y^{\prime }=c x+d y \end {array}\right ] \]

system_of_ODEs

0.677

13696

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-4 y-x \left (x^{2}+y^{2}\right ) \\ y^{\prime }=4 x+4 y-y \left (x^{2}+y^{2}\right ) \end {array}\right ] \]

system_of_ODEs

0.059

13697

\[ {}\left [\begin {array}{c} x^{\prime }=y+\frac {x \left (1-x^{2}-y^{2}\right )}{\sqrt {x^{2}+y^{2}}} \\ y^{\prime }=-x+\frac {y \left (1-x^{2}-y^{2}\right )}{\sqrt {x^{2}+y^{2}}} \end {array}\right ] \]

system_of_ODEs

0.090

13698

\[ {}x^{\prime \prime }+x^{4} x^{\prime }-x^{\prime }+x = 0 \]

[[_2nd_order, _missing_x]]

2.562

13699

\[ {}x^{\prime \prime }+x^{\prime }+{x^{\prime }}^{3}+x = 0 \]

[[_2nd_order, _missing_x]]

1.589

13700

\[ {}x^{\prime \prime }+\left (x^{4}+x^{2}\right ) x^{\prime }+x^{3}+x = 0 \]

[[_2nd_order, _missing_x]]

4.376