2.2.115 Problems 11401 to 11500

Table 2.231: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

11401

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x^{4}}+\frac {y}{x^{5}} \]

[[_2nd_order, _with_linear_symmetries]]

1.587

11402

\[ {}y^{\prime \prime } = -\frac {\left (3 x^{2}-1\right ) y^{\prime }}{\left (x^{2}-1\right ) x}-\frac {\left (x^{2}-1-\left (2 v +1\right )^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.096

11403

\[ {}y^{\prime \prime } = \frac {\left (3 x +1\right ) y^{\prime }}{\left (x -1\right ) \left (x +1\right )}-\frac {36 \left (x +1\right )^{2} y}{\left (x -1\right )^{2} \left (3 x +5\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.554

11404

\[ {}y^{\prime \prime } = \frac {y^{\prime }}{x}-\frac {a y}{x^{6}} \]

[[_Emden, _Fowler]]

2.600

11405

\[ {}y^{\prime \prime } = -\frac {\left (3 x^{2}+a \right ) y^{\prime }}{x^{3}}-\frac {b y}{x^{6}} \]

[[_2nd_order, _with_linear_symmetries]]

1.288

11406

\[ {}y^{\prime \prime } = -\frac {\left (\left (1-4 a \right ) x^{2}-1\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (\left (-v^{2}+x^{2}\right ) \left (x^{2}-1\right )^{2}+4 a \left (a +1\right ) x^{4}-2 a \,x^{2} \left (x^{2}-1\right )\right ) y}{x^{2} \left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

2.733

11407

\[ {}y^{\prime \prime } = -\left (\frac {1-\operatorname {a1} -\operatorname {b1}}{x -\operatorname {c1}}+\frac {1-\operatorname {a2} -\operatorname {b2}}{x -\operatorname {c2}}+\frac {1-\operatorname {a3} -\operatorname {b3}}{x -\operatorname {c3}}\right ) y^{\prime }-\frac {\left (\frac {\operatorname {a1} \operatorname {b1} \left (\operatorname {c1} -\operatorname {c3} \right ) \left (\operatorname {c1} -\operatorname {c2} \right )}{x -\operatorname {c1}}+\frac {\operatorname {a2} \operatorname {b2} \left (\operatorname {c2} -\operatorname {c1} \right ) \left (\operatorname {c2} -\operatorname {c3} \right )}{x -\operatorname {c2}}+\frac {\operatorname {a3} \operatorname {b3} \left (\operatorname {c3} -\operatorname {c2} \right ) \left (\operatorname {c3} -\operatorname {c1} \right )}{x -\operatorname {c3}}\right ) y}{\left (x -\operatorname {c1} \right ) \left (x -\operatorname {c2} \right ) \left (x -\operatorname {c3} \right )} \]

[[_2nd_order, _with_linear_symmetries]]

7.589

11408

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (-2 x^{2}+1\right ) y}{4 x^{6}} \]

[[_2nd_order, _with_linear_symmetries]]

0.885

11409

\[ {}y^{\prime \prime } = \frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (a \,x^{4}+10 x^{2}+1\right ) y}{4 x^{6}} \]

[[_2nd_order, _with_linear_symmetries]]

1.355

11410

\[ {}y^{\prime \prime } = -\frac {27 x y}{16 \left (x^{3}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

4.441

11411

\[ {}y^{\prime \prime } = -\left (\frac {\left (1-\operatorname {al1} -\operatorname {bl1} \right ) \operatorname {b1}}{\operatorname {b1} x -\operatorname {a1}}+\frac {\left (1-\operatorname {al2} -\operatorname {bl2} \right ) \operatorname {b2}}{\operatorname {b2} x -\operatorname {a2}}+\frac {\left (1-\operatorname {al3} -\operatorname {bl3} \right ) \operatorname {b3}}{\operatorname {b3} x -\operatorname {a3}}\right ) y^{\prime }-\frac {\left (\frac {\operatorname {al1} \operatorname {bl1} \left (\operatorname {a1} \operatorname {b2} -\operatorname {a2} \operatorname {b1} \right ) \left (-\operatorname {a1} \operatorname {b3} +\operatorname {a3} \operatorname {b1} \right )}{\operatorname {b1} x -\operatorname {a1}}+\frac {\operatorname {al2} \operatorname {bl2} \left (\operatorname {a2} \operatorname {b3} -\operatorname {a3} \operatorname {b2} \right ) \left (\operatorname {a1} \operatorname {b2} -\operatorname {a2} \operatorname {b1} \right )}{\operatorname {b2} x -\operatorname {a2}}+\frac {\operatorname {al3} \operatorname {bl3} \left (-\operatorname {a1} \operatorname {b3} +\operatorname {a3} \operatorname {b1} \right ) \left (\operatorname {a2} \operatorname {b3} -\operatorname {a3} \operatorname {b2} \right )}{\operatorname {b3} x -\operatorname {a3}}\right ) y}{\left (\operatorname {b1} x -\operatorname {a1} \right ) \left (\operatorname {b2} x -\operatorname {a2} \right ) \left (\operatorname {b3} x -\operatorname {a3} \right )} \]

[[_2nd_order, _with_linear_symmetries]]

9.574

11412

\[ {}y^{\prime \prime } = -\frac {\left (x^{2} \left (\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right )+\left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )+\left (x^{2}-\operatorname {a3} \right ) \left (x^{2}-\operatorname {a1} \right )\right )-\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )\right ) y^{\prime }}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )}-\frac {\left (A \,x^{2}+B \right ) y}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )} \]

[[_2nd_order, _with_linear_symmetries]]

8.505

11413

\[ {}y^{\prime \prime } = -a \,x^{2 a -1} x^{-2 a} y^{\prime }-b^{2} x^{-2 a} y \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.920

11414

\[ {}y^{\prime \prime } = -\frac {\left (a p \,x^{b}+q \right ) y^{\prime }}{x \left (a \,x^{b}-1\right )}-\frac {\left (a r \,x^{b}+s \right ) y}{x^{2} \left (a \,x^{b}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.906

11415

\[ {}y^{\prime \prime } = \frac {y}{{\mathrm e}^{x}+1} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.248

11416

\[ {}y^{\prime \prime } = \frac {y^{\prime }}{x \ln \left (x \right )}+\ln \left (x \right )^{2} y \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.879

11417

\[ {}y^{\prime \prime } = \frac {y^{\prime }}{x \left (\ln \left (x \right )-1\right )}-\frac {y}{x^{2} \left (\ln \left (x \right )-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

0.582

11418

\[ {}y^{\prime \prime } = -\frac {\left (-a^{2} \sinh \left (x \right )^{2}-n \left (n -1\right )\right ) y}{\sinh \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.277

11419

\[ {}y^{\prime \prime } = -\frac {2 n \cosh \left (x \right ) y^{\prime }}{\sinh \left (x \right )}-\left (-a^{2}+n^{2}\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

1.883

11420

\[ {}y^{\prime \prime } = -\frac {\left (2 n +1\right ) \cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\left (v +n +1\right ) \left (v -n \right ) y \]

[[_2nd_order, _with_linear_symmetries]]

2.734

11421

\[ {}y^{\prime \prime } = -\frac {\left (\sin \left (x \right )^{2}-\cos \left (x \right )\right ) y^{\prime }}{\sin \left (x \right )}-y \sin \left (x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

4.745

11422

\[ {}y^{\prime \prime } = -\frac {x \sin \left (x \right ) y^{\prime }}{\cos \left (x \right ) x -\sin \left (x \right )}+\frac {\sin \left (x \right ) y}{\cos \left (x \right ) x -\sin \left (x \right )} \]

[[_2nd_order, _with_linear_symmetries]]

8.481

11423

\[ {}y^{\prime \prime } = -\frac {\left (\sin \left (x \right ) x^{2}-2 \cos \left (x \right ) x \right ) y^{\prime }}{x^{2} \cos \left (x \right )}-\frac {\left (2 \cos \left (x \right )-x \sin \left (x \right )\right ) y}{x^{2} \cos \left (x \right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.983

11424

\[ {}\cos \left (x \right )^{2} y^{\prime \prime }-\left (a \cos \left (x \right )^{2}+n \left (n -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.339

11425

\[ {}y^{\prime \prime } = -\frac {a \left (n -1\right ) \sin \left (2 a x \right ) y^{\prime }}{\cos \left (a x \right )^{2}}-\frac {n \,a^{2} \left (\left (n -1\right ) \sin \left (a x \right )^{2}+\cos \left (a x \right )^{2}\right ) y}{\cos \left (a x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

5.015

11426

\[ {}y^{\prime \prime } = \frac {2 y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

0.685

11427

\[ {}y^{\prime \prime } = -\frac {a y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

0.756

11428

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-\left (a \sin \left (x \right )^{2}+n \left (n -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.383

11429

\[ {}y^{\prime \prime } = -\frac {\left (-a^{2} \cos \left (x \right )^{2}-\left (3-2 a \right ) \cos \left (x \right )-3+3 a \right ) y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

4.658

11430

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-\left (a^{2} \cos \left (x \right )^{2}+b \cos \left (x \right )+\frac {b^{2}}{\left (2 a -3\right )^{2}}+3 a +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11.608

11431

\[ {}y^{\prime \prime } = -\frac {\left (-\left (a^{2} b^{2}-\left (a +1\right )^{2}\right ) \sin \left (x \right )^{2}-a \left (a +1\right ) b \sin \left (2 x \right )-a \left (a -1\right )\right ) y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

5.453

11432

\[ {}y^{\prime \prime } = -\frac {\left (a \cos \left (x \right )^{2}+b \sin \left (x \right )^{2}+c \right ) y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

2.521

11433

\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.515

11434

\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (v \left (v +1\right ) \sin \left (x \right )^{2}-n^{2}\right ) y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

3.467

11435

\[ {}y^{\prime \prime } = \frac {\cos \left (2 x \right ) y^{\prime }}{\sin \left (2 x \right )}-2 y \]

[[_2nd_order, _with_linear_symmetries]]

2.270

11436

\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (-17 \sin \left (x \right )^{2}-1\right ) y}{4 \sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

2.122

11437

\[ {}y^{\prime \prime } = -\frac {\sin \left (x \right ) y^{\prime }}{\cos \left (x \right )}-\frac {\left (2 x^{2}+x^{2} \sin \left (x \right )^{2}-24 \cos \left (x \right )^{2}\right ) y}{4 x^{2} \cos \left (x \right )^{2}}+\sqrt {\cos \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.413

11438

\[ {}y^{\prime \prime } = -\frac {b \cos \left (x \right ) y^{\prime }}{\sin \left (x \right ) a}-\frac {\left (c \cos \left (x \right )^{2}+d \cos \left (x \right )+e \right ) y}{a \sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

4.548

11439

\[ {}y^{\prime \prime } = -\frac {4 \sin \left (3 x \right ) y}{\sin \left (x \right )^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

2.285

11440

\[ {}y^{\prime \prime } = -\frac {\left (4 v \left (v +1\right ) \sin \left (x \right )^{2}-\cos \left (x \right )^{2}+2-4 n^{2}\right ) y}{4 \sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

3.381

11441

\[ {}y^{\prime \prime } = \frac {\left (3 \sin \left (x \right )^{2}+1\right ) y^{\prime }}{\cos \left (x \right ) \sin \left (x \right )}+\frac {\sin \left (x \right )^{2} y}{\cos \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

5.341

11442

\[ {}y^{\prime \prime } = -\frac {\left (-a \cos \left (x \right )^{2} \sin \left (x \right )^{2}-m \left (m -1\right ) \sin \left (x \right )^{2}-n \left (n -1\right ) \cos \left (x \right )^{2}\right ) y}{\cos \left (x \right )^{2} \sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

5.264

11443

\[ {}y^{\prime \prime } = \frac {\phi ^{\prime }\left (x \right ) y^{\prime }}{\phi \left (x \right )-\phi \left (a \right )}-\frac {\left (-n \left (n +1\right ) \left (\phi \left (x \right )-\phi \left (a \right )\right )^{2}+D^{\left (2\right )}\left (\phi \right )\left (a \right )\right ) y}{\phi \left (x \right )-\phi \left (a \right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.214

11444

\[ {}y^{\prime \prime } = -\frac {\left (\phi \left (x^{3}\right )-\phi \left (x \right ) \phi ^{\prime }\left (x \right )-\phi ^{\prime \prime }\left (x \right )\right ) y^{\prime }}{\phi ^{\prime }\left (x \right )+\phi \left (x \right )^{2}}-\frac {\left ({\phi ^{\prime }\left (x \right )}^{2}-\phi \left (x \right )^{2} \phi ^{\prime }\left (x \right )-\phi \left (x \right ) \phi ^{\prime \prime }\left (x \right )\right ) y}{\phi ^{\prime }\left (x \right )+\phi \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

2.043

11445

\[ {}y^{\prime \prime } = \frac {2 \,\operatorname {JacobiSN}\left (x , k\right ) \operatorname {JacobiCN}\left (x , k\right ) \operatorname {JacobiDN}\left (x , k\right ) y^{\prime }-2 \left (1-2 \left (k^{2}+1\right ) \operatorname {JacobiSN}\left (a , k\right )^{2}+3 k^{2} \operatorname {JacobiSN}\left (a , k\right )^{4}\right ) y}{\operatorname {JacobiSN}\left (x , k\right )^{2}-\operatorname {JacobiSN}\left (a , k\right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.183

11446

\[ {}y^{\prime \prime } = -\frac {x y^{\prime }}{f \left (x \right )}+\frac {y}{f \left (x \right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.001

11447

\[ {}y^{\prime \prime } = -\frac {f^{\prime }\left (x \right ) y^{\prime }}{2 f \left (x \right )}-\frac {g \left (x \right ) y}{f \left (x \right )} \]

[[_2nd_order, _with_linear_symmetries]]

0.881

11448

\[ {}y^{\prime \prime } = -\frac {\left (2 f \left (x \right ) {g^{\prime }\left (x \right )}^{2} g \left (x \right )-\left (g \left (x \right )^{2}-1\right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )\right ) y^{\prime }}{f \left (x \right ) g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )}-\frac {\left (\left (g \left (x \right )^{2}-1\right ) \left (f^{\prime }\left (x \right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )-f \left (x \right ) f^{\prime \prime }\left (x \right ) g^{\prime }\left (x \right )\right )-\left (2 f^{\prime }\left (x \right ) g \left (x \right )+v \left (v +1\right ) f \left (x \right ) g^{\prime }\left (x \right )\right ) f \left (x \right ) {g^{\prime }\left (x \right )}^{2}\right ) y}{f \left (x \right )^{2} g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

2.471

11449

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (x -1\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

1.039

11450

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (-x -1\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

1.071

11451

\[ {}y^{\prime \prime } = -\frac {b^{2} y}{\left (-a^{2}+x^{2}\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.926

11452

\[ {}y^{\prime \prime \prime }-\lambda y = 0 \]

[[_3rd_order, _missing_x]]

0.104

11453

\[ {}y^{\prime \prime \prime }+y a \,x^{3}-b x = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.055

11454

\[ {}y^{\prime \prime \prime }-a \,x^{b} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.061

11455

\[ {}y^{\prime \prime \prime }+3 y^{\prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

0.078

11456

\[ {}y^{\prime \prime \prime }-a^{2} y^{\prime }-{\mathrm e}^{2 a x} \sin \left (x \right )^{2} = 0 \]

[[_3rd_order, _missing_y]]

0.243

11457

\[ {}y^{\prime \prime \prime }+2 a x y^{\prime }+a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.057

11458

\[ {}y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+\left (a +b -1\right ) x y^{\prime }-b y a = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.064

11459

\[ {}y^{\prime \prime \prime }+x^{2 c -2} y^{\prime }+\left (c -1\right ) x^{2 c -3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.095

11460

\[ {}y^{\prime \prime \prime }-3 \left (2 \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }+b y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.067

11461

\[ {}y^{\prime \prime \prime }+\left (-n^{2}+1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime }+\frac {\left (\left (-n^{2}+1\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right )-a \right ) y}{2} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.076

11462

\[ {}y^{\prime \prime \prime }-\left (4 n \left (n +1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }-2 n \left (n +1\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.073

11463

\[ {}y^{\prime \prime \prime }+\left (A \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }+B \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.066

11464

\[ {}y^{\prime \prime \prime }-\left (3 k^{2} \operatorname {JacobiSN}\left (z , x\right )^{2}+a \right ) y^{\prime }+\left (b +c \operatorname {JacobiSN}\left (z , x\right )^{2}-3 k^{2} \operatorname {JacobiSN}\left (z , x\right ) \operatorname {JacobiCN}\left (z , x\right ) \operatorname {JacobiDN}\left (z , x\right )\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.132

11465

\[ {}y^{\prime \prime \prime }-\left (6 k^{2} \sin \left (x \right )^{2}+a \right ) y^{\prime }+b y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.086

11466

\[ {}y^{\prime \prime \prime }+2 f \left (x \right ) y^{\prime }+f^{\prime }\left (x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.062

11467

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime }+10 y = 0 \]

[[_3rd_order, _missing_x]]

0.079

11468

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-a^{2} y^{\prime }+2 a^{2} y-\sinh \left (x \right ) = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.611

11469

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y-{\mathrm e}^{a x} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.145

11470

\[ {}y^{\prime \prime \prime }+\operatorname {a2} y^{\prime \prime }+\operatorname {a1} y^{\prime }+\operatorname {a0} y = 0 \]

[[_3rd_order, _missing_x]]

0.212

11471

\[ {}y^{\prime \prime \prime }-6 x y^{\prime \prime }+2 \left (4 x^{2}+2 a -1\right ) y^{\prime }-8 y a x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.066

11472

\[ {}y^{\prime \prime \prime }+3 a x y^{\prime \prime }+3 a^{2} x^{2} y^{\prime }+a^{3} x^{3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.064

11473

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } \sin \left (x \right )-2 y^{\prime } \cos \left (x \right )+y \sin \left (x \right )-\ln \left (x \right ) = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

0.598

11474

\[ {}y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime }+y^{\prime }+f \left (x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.062

11475

\[ {}y^{\prime \prime \prime }+f \left (x \right ) \left (x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y\right ) = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.069

11476

\[ {}y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime }+g \left (x \right ) y^{\prime }+\left (f \left (x \right ) g \left (x \right )+g^{\prime }\left (x \right )\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.070

11477

\[ {}y^{\prime \prime \prime }+3 f \left (x \right ) y^{\prime \prime }+\left (f^{\prime }\left (x \right )+2 f \left (x \right )^{2}+4 g \left (x \right )\right ) y^{\prime }+\left (4 f \left (x \right ) g \left (x \right )+2 g^{\prime }\left (x \right )\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.074

11478

\[ {}4 y^{\prime \prime \prime }-8 y^{\prime \prime }-11 y^{\prime }-3 y+18 \,{\mathrm e}^{x} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.127

11479

\[ {}27 y^{\prime \prime \prime }-36 n^{2} \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime }-2 n \left (n +3\right ) \left (4 n -3\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.076

11480

\[ {}x y^{\prime \prime \prime }+3 y^{\prime \prime }+x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.056

11481

\[ {}x y^{\prime \prime \prime }+3 y^{\prime \prime }-a \,x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.060

11482

\[ {}x y^{\prime \prime \prime }+\left (a +b \right ) y^{\prime \prime }-y^{\prime } x -a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.060

11483

\[ {}x y^{\prime \prime \prime }-\left (x +2 v \right ) y^{\prime \prime }-\left (x -2 v -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.097

11484

\[ {}x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 y^{\prime } x +2 y-f \left (x \right ) = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

0.464

11485

\[ {}2 x y^{\prime \prime \prime }+3 y^{\prime \prime }+y a x -b = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.059

11486

\[ {}2 x y^{\prime \prime \prime }-4 \left (x +\nu -1\right ) y^{\prime \prime }+\left (2 x +6 \nu -5\right ) y^{\prime }+\left (1-2 \nu \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.066

11487

\[ {}2 x y^{\prime \prime \prime }+3 \left (2 a x +k \right ) y^{\prime \prime }+6 \left (a k +b x \right ) y^{\prime }+\left (3 b k +2 c x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.069

11488

\[ {}\left (x -2\right ) x y^{\prime \prime \prime }-\left (x -2\right ) x y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.515

11489

\[ {}\left (2 x -1\right ) y^{\prime \prime \prime }-8 y^{\prime } x +8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.056

11490

\[ {}\left (2 x -1\right ) y^{\prime \prime \prime }+\left (x +4\right ) y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.583

11491

\[ {}x^{2} y^{\prime \prime \prime }-6 y^{\prime }+a \,x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.061

11492

\[ {}x^{2} y^{\prime \prime \prime }+\left (x +1\right ) y^{\prime \prime }-y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.058

11493

\[ {}x^{2} y^{\prime \prime \prime }-x y^{\prime \prime }+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.262

11494

\[ {}x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+\left (4 a^{2} x^{2 a}+1-4 \nu ^{2} a^{2}\right ) y^{\prime } = 4 a^{3} x^{2 a -1} y \]

[[_3rd_order, _with_linear_symmetries]]

0.587

11495

\[ {}x^{2} y^{\prime \prime \prime }-3 \left (x -m \right ) x y^{\prime \prime }+\left (2 x^{2}+4 \left (n -m \right ) x +m \left (2 m -1\right )\right ) y^{\prime }-2 n \left (2 x -2 m +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.076

11496

\[ {}x^{2} y^{\prime \prime \prime }+4 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+3 x y-f \left (x \right ) = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.063

11497

\[ {}x^{2} y^{\prime \prime \prime }+5 x y^{\prime \prime }+4 y^{\prime }-\ln \left (x \right ) = 0 \]

[[_3rd_order, _missing_y]]

0.218

11498

\[ {}x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime }+6 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.183

11499

\[ {}x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime }+6 y^{\prime }+a \,x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.062

11500

\[ {}x^{2} y^{\prime \prime \prime }-3 \left (p +q \right ) x y^{\prime \prime }+3 p \left (3 q +1\right ) y^{\prime }-x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.062