2.2.114 Problems 11301 to 11400

Table 2.229: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

11301

\[ {}\operatorname {a2} \,x^{2} y^{\prime \prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x \right ) y^{\prime }+\left (\operatorname {a0} \,x^{2}+\operatorname {b0} x +\operatorname {c0} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.380

11302

\[ {}\left (a \,x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

305.698

11303

\[ {}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

1.355

11304

\[ {}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }-2 a^{2} y = 0 \]

[_Gegenbauer]

1.638

11305

\[ {}\left (a \,x^{2}+b x \right ) y^{\prime \prime }+2 b y^{\prime }-2 a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.506

11306

\[ {}\operatorname {A2} \left (a x +b \right )^{2} y^{\prime \prime }+\operatorname {A1} \left (a x +b \right ) y^{\prime }+\operatorname {A0} \left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.674

11307

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (d x +f \right ) y^{\prime }+g y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.655

11308

\[ {}x^{3} y^{\prime \prime }+y^{\prime } x -\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.431

11309

\[ {}x^{3} y^{\prime \prime }+2 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.511

11310

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+\left (a \,x^{2}+b x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.493

11311

\[ {}x^{3} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.383

11312

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y-\ln \left (x \right )^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.835

11313

\[ {}x^{3} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.657

11314

\[ {}x^{3} y^{\prime \prime }+3 x^{2} y^{\prime }+x y-1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.615

11315

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 x^{2}+1\right ) y^{\prime }-v \left (v +1\right ) x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.044

11316

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (x^{2}-1\right ) y^{\prime }-2 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.219

11317

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 \left (n +1\right ) x^{2}+2 n +1\right ) y^{\prime }-\left (v -n \right ) \left (v +n +1\right ) x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.313

11318

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }-\left (2 \left (n -1\right ) x^{2}+2 n -1\right ) y^{\prime }+\left (v +n \right ) \left (-v +n -1\right ) x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.293

11319

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime }+y a \,x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.820

11320

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-x y = 0 \]

[[_elliptic, _class_II]]

59.205

11321

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+\left (3 x^{2}-1\right ) y^{\prime }+x y = 0 \]

[[_elliptic, _class_I]]

0.887

11322

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.484

11323

\[ {}x \left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime }-6 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.916

11324

\[ {}x \left (x^{2}-2\right ) y^{\prime \prime }-\left (x^{3}+3 x^{2}-2 x -2\right ) y^{\prime }+\left (x^{2}+4 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.585

11325

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.161

11326

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+2 x \left (3 x +2\right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

1.074

11327

\[ {}y^{\prime \prime } = -\frac {2 \left (x -2\right ) y^{\prime }}{x \left (x -1\right )}+\frac {2 \left (x +1\right ) y}{x^{2} \left (x -1\right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.104

11328

\[ {}y^{\prime \prime } = \frac {\left (5 x -4\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (9 x -6\right ) y}{x^{2} \left (x -1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.263

11329

\[ {}y^{\prime \prime } = -\frac {\left (\left (a +b +1\right ) x +\alpha +\beta -1\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (a b x -\alpha \beta \right ) y}{x^{2} \left (x -1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.620

11330

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x +1}-\frac {y}{x \left (x +1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

0.947

11331

\[ {}y^{\prime \prime } = \frac {2 y^{\prime }}{x \left (x -2\right )}-\frac {y}{x^{2} \left (x -2\right )} \]

[[_2nd_order, _with_linear_symmetries]]

109.095

11332

\[ {}y^{\prime \prime } = \frac {2 y}{x \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

0.950

11333

\[ {}y^{\prime \prime } = -\frac {\left (\left (\alpha +\beta +1\right ) x^{2}-\left (\alpha +\beta +1+a \left (\gamma +\delta \right )-\delta \right ) x +a \gamma \right ) y^{\prime }}{x \left (x -1\right ) \left (x -a \right )}-\frac {\left (\alpha \beta x -q \right ) y}{x \left (x -1\right ) \left (x -a \right )} \]

[[_2nd_order, _with_linear_symmetries]]

2.411

11334

\[ {}y^{\prime \prime } = -\frac {\left (A \,x^{2}+B x +C \right ) y^{\prime }}{\left (x -a \right ) \left (x -b \right ) \left (x -c \right )}-\frac {\left (\operatorname {DD} x +E \right ) y}{\left (x -a \right ) \left (x -b \right ) \left (x -c \right )} \]

[[_2nd_order, _with_linear_symmetries]]

68.917

11335

\[ {}y^{\prime \prime } = \frac {\left (x -4\right ) y^{\prime }}{2 x \left (x -2\right )}-\frac {\left (x -3\right ) y}{2 x^{2} \left (x -2\right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.191

11336

\[ {}y^{\prime \prime } = \frac {y^{\prime }}{x +1}-\frac {\left (3 x +1\right ) y}{4 x^{2} \left (x +1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.174

11337

\[ {}y^{\prime \prime } = -\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}+\frac {v \left (v +1\right ) y}{4 x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

0.978

11338

\[ {}y^{\prime \prime } = -\frac {\left (\left (a +1\right ) x -1\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (\left (a^{2}-b^{2}\right ) x +c^{2}\right ) y}{4 x^{2} \left (x -1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.272

11339

\[ {}y^{\prime \prime } = -\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (a x +b \right ) y}{4 x \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

0.931

11340

\[ {}y^{\prime \prime } = -\frac {\left (-3 x +1\right ) y}{\left (x -1\right ) \left (2 x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.158

11341

\[ {}y^{\prime \prime } = -\frac {\left (3 x +a +2 b \right ) y^{\prime }}{2 \left (x +a \right ) \left (x +b \right )}-\frac {\left (a -b \right ) y}{4 \left (x +a \right )^{2} \left (x +b \right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.102

11342

\[ {}y^{\prime \prime } = \frac {\left (6 x -1\right ) y^{\prime }}{3 x \left (x -2\right )}+\frac {y}{3 x^{2} \left (x -2\right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.321

11343

\[ {}y^{\prime \prime } = -\frac {\left (a \left (b +2\right ) x^{2}+\left (c -d +1\right ) x \right ) y^{\prime }}{\left (a x +1\right ) x^{2}}-\frac {\left (a b x -c d \right ) y}{\left (a x +1\right ) x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.533

11344

\[ {}y^{\prime \prime } = \frac {2 \left (a x +2 b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (2 a x +6 b \right ) y}{\left (a x +b \right ) x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.078

11345

\[ {}y^{\prime \prime } = -\frac {\left (2 a x +b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (a v x -b \right ) y}{\left (a x +b \right ) x^{2}}+A x \]

[[_2nd_order, _linear, _nonhomogeneous]]

107.684

11346

\[ {}y^{\prime \prime } = -\frac {a y}{x^{4}} \]

[[_Emden, _Fowler]]

3.408

11347

\[ {}y^{\prime \prime } = -\frac {\left (x^{2} a \left (1-a \right )-b \left (x +b \right )\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

0.604

11348

\[ {}y^{\prime \prime } = -\frac {\left ({\mathrm e}^{\frac {2}{x}}-v^{2}\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

0.293

11349

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x^{3}}+\frac {2 y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

1.365

11350

\[ {}y^{\prime \prime } = \frac {\left (a +b \right ) y^{\prime }}{x^{2}}-\frac {\left (\left (a +b \right ) x +a b \right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

1.704

11351

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {y}{x^{4}} \]

[[_Emden, _Fowler]]

0.816

11352

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (b \,x^{2}+a \left (x^{4}+1\right )\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

0.869

11353

\[ {}y^{\prime \prime } = -\frac {\left (x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

0.658

11354

\[ {}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {a^{2} y}{x^{4}} \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.268

11355

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}+\frac {y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

1.392

11356

\[ {}y^{\prime \prime } = -\frac {2 \left (x +a \right ) y^{\prime }}{x^{2}}-\frac {b y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

1.928

11357

\[ {}y^{\prime \prime } = \frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

2.494

11358

\[ {}y^{\prime \prime } = \frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {2 y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

1.792

11359

\[ {}y^{\prime \prime } = -\frac {\left (x^{3}-1\right ) y^{\prime }}{x \left (x^{3}+1\right )}+\frac {x y}{x^{3}+1} \]

[[_2nd_order, _with_linear_symmetries]]

2.433

11360

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (-v \left (v +1\right ) x^{2}-n^{2}\right ) y}{x^{2} \left (x^{2}+1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.214

11361

\[ {}y^{\prime \prime } = -\frac {\left (a \,x^{2}+a -1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (b \,x^{2}+c \right ) y}{x^{2} \left (x^{2}+1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.254

11362

\[ {}y^{\prime \prime } = \frac {\left (x^{2}-2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (x^{2}-2\right ) y}{x^{2} \left (x^{2}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.318

11363

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}-\frac {v \left (v +1\right ) y}{x^{2} \left (x^{2}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.003

11364

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}+\frac {v \left (v +1\right ) y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.010

11365

\[ {}y^{\prime \prime } = \frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (a \left (a +1\right )-a \,x^{2} \left (a +3\right )\right ) y}{x^{2} \left (x^{2}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

1.750

11366

\[ {}x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-2 x^{3} y^{\prime }-\left (\left (a -n \right ) \left (a +n +1\right ) x^{2} \left (x^{2}-1\right )+2 a \,x^{2}+n \left (n +1\right ) \left (x^{2}-1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.152

11367

\[ {}y^{\prime \prime } = -\frac {\left (a \,x^{2}+a -2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {b y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.550

11368

\[ {}y^{\prime \prime } = \frac {\left (2 b c \,x^{c} \left (x^{2}-1\right )+2 \left (a -1\right ) x^{2}-2 a \right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (b^{2} c^{2} x^{2 c} \left (x^{2}-1\right )+b c \,x^{c +2} \left (2 a -c -1\right )-b c \,x^{c} \left (2 a -c +1\right )+x^{2} \left (a \left (a -1\right )-v \left (v +1\right )\right )-a \left (a +1\right )\right ) y}{x^{2} \left (x^{2}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

3.141

11369

\[ {}y^{\prime \prime } = -\frac {a y}{\left (x^{2}+1\right )^{2}} \]

[_Halm]

1.445

11370

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}+1}-\frac {y}{\left (x^{2}+1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.085

11371

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}+1}-\frac {\left (a^{2} \left (x^{2}+1\right )^{2}-n \left (n +1\right ) \left (x^{2}+1\right )+m^{2}\right ) y}{\left (x^{2}+1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.171

11372

\[ {}y^{\prime \prime } = -\frac {a x y^{\prime }}{x^{2}+1}-\frac {b y}{\left (x^{2}+1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.060

11373

\[ {}y^{\prime \prime } = -\frac {a y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.589

11374

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}+\frac {a^{2} y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.429

11375

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2}-\lambda \left (x^{2}-1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

0.962

11376

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (\left (x^{2}-1\right ) \left (a \,x^{2}+b x +c \right )-k^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.176

11377

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2} \left (x^{2}-1\right )^{2}-n \left (n +1\right ) \left (x^{2}-1\right )-m^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.168

11378

\[ {}y^{\prime \prime } = \frac {2 x \left (2 a -1\right ) y^{\prime }}{x^{2}-1}-\frac {\left (x^{2} \left (2 a \left (2 a -1\right )-v \left (v +1\right )\right )+2 a +v \left (v +1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.290

11379

\[ {}y^{\prime \prime } = -\frac {2 x \left (n +1-2 a \right ) y^{\prime }}{x^{2}-1}-\frac {\left (4 a \,x^{2} \left (a -n \right )-\left (x^{2}-1\right ) \left (2 a +\left (v -n \right ) \left (v +n +1\right )\right )\right ) y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.319

11380

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+a \right ) y^{\prime }}{x \left (x^{2}+a \right )}-\frac {b y}{x^{2} \left (x^{2}+a \right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.359

11381

\[ {}y^{\prime \prime } = -\frac {b^{2} y}{\left (a^{2}+x^{2}\right )^{2}} \]

[[_Emden, _Fowler]]

1.706

11382

\[ {}y^{\prime \prime } = -\frac {2 \left (x^{2}-1\right ) y^{\prime }}{x \left (x -1\right )^{2}}-\frac {\left (-2 x^{2}+2 x +2\right ) y}{x^{2} \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.349

11383

\[ {}y^{\prime \prime } = \frac {12 y}{\left (x +1\right )^{2} \left (x^{2}+2 x +3\right )} \]

[[_2nd_order, _with_linear_symmetries]]

4.082

11384

\[ {}y^{\prime \prime } = -\frac {b y}{x^{2} \left (x -a \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.924

11385

\[ {}y^{\prime \prime } = -\frac {b y}{x^{2} \left (x -a \right )^{2}}+c \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.148

11386

\[ {}y^{\prime \prime } = \frac {c y}{\left (x -a \right )^{2} \left (x -b \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

2.587

11387

\[ {}y^{\prime \prime } = -\frac {\left (\left (\alpha +\beta +1\right ) \left (x -a \right )^{2} \left (x -b \right )+\left (1-\alpha -\beta \right ) \left (x -b \right )^{2} \left (x -a \right )\right ) y^{\prime }}{\left (x -a \right )^{2} \left (x -b \right )^{2}}-\frac {\alpha \beta \left (a -b \right )^{2} y}{\left (x -a \right )^{2} \left (x -b \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

5.286

11388

\[ {}y^{\prime \prime } = -\frac {\left (-x^{2} \left (a^{2}-1\right )+2 \left (a +3\right ) b x -b^{2}\right ) y}{4 x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

0.886

11389

\[ {}y^{\prime \prime } = -\frac {\left (a \,x^{2}+a -3\right ) y}{4 \left (x^{2}+1\right )^{2}} \]

[_Halm]

1.671

11390

\[ {}y^{\prime \prime } = \frac {18 y}{\left (2 x +1\right )^{2} \left (x^{2}+x +1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

4.108

11391

\[ {}y^{\prime \prime } = \frac {3 y}{4 \left (x^{2}+x +1\right )^{2}} \]

[[_Emden, _Fowler]]

1.881

11392

\[ {}y^{\prime \prime } = -\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (v \left (v +1\right ) \left (x -1\right )-a^{2} x \right ) y}{4 x^{2} \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.056

11393

\[ {}y^{\prime \prime } = -\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (-v \left (v +1\right ) \left (x -1\right )^{2}-4 n^{2} x \right ) y}{4 x^{2} \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.165

11394

\[ {}y^{\prime \prime } = -\frac {3 y}{16 x^{2} \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

0.946

11395

\[ {}y^{\prime \prime } = \frac {\left (7 a \,x^{2}+5\right ) y^{\prime }}{x \left (a \,x^{2}+1\right )}-\frac {\left (15 a \,x^{2}+5\right ) y}{x^{2} \left (a \,x^{2}+1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

0.892

11396

\[ {}y^{\prime \prime } = -\frac {b x y^{\prime }}{\left (x^{2}-1\right ) a}-\frac {\left (c \,x^{2}+d x +e \right ) y}{a \left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.321

11397

\[ {}y^{\prime \prime } = -\frac {\left (b \,x^{2}+c x +d \right ) y}{a \,x^{2} \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

0.811

11398

\[ {}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {c y}{x^{2} \left (a x +b \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.934

11399

\[ {}y^{\prime \prime } = -\frac {y}{\left (a x +b \right )^{4}} \]

[[_Emden, _Fowler]]

1.796

11400

\[ {}y^{\prime \prime } = -\frac {A y}{\left (a \,x^{2}+b x +c \right )^{2}} \]

[[_Emden, _Fowler]]

3.576