61 HFOPDE, chapter 2.8.1

61.1 problem number 1
61.2 problem number 2
61.3 problem number 3
61.4 problem number 4
61.5 problem number 5
61.6 problem number 6
61.7 problem number 7
61.8 problem number 8
61.9 problem number 9
61.10 problem number 10
61.11 problem number 11
61.12 problem number 12
61.13 problem number 13

____________________________________________________________________________________

61.1 problem number 1

problem number 560

Added Feb. 4, 2019.

Problem 2.8.1.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( f(x) y+g(x) \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f]; 
 pde = D[w[x, y], x] + (f[x]*y + g[x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (-e^{-\int _1^x f(K[1]) \, dK[1]} \left (e^{\int _1^x f(K[1]) \, dK[1]} \int _1^x g(K[2]) e^{-\text {Integrate}[f(K[1]),\{K[1],1,K[2]\},\text {Assumptions}\to \text {True}]} \, dK[2]-y\right )\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+( f(x)*y+g(x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!g \left ( x \right ) {{\rm e}^{-\int \!f \left ( x \right ) \,{\rm d}x}}\,{\rm d}x+y{{\rm e}^{-\int \!f \left ( x \right ) \,{\rm d}x}} \right ) \]

____________________________________________________________________________________

61.2 problem number 2

problem number 561

Added Feb. 4, 2019.

Problem 2.8.1.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( f(x) y+g(x) y^k \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f]; 
 pde = D[w[x, y], x] + (f[x]*y + g[x]*y^k)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (y^{-k} e^{-\int _1^x f(K[1]) \, dK[1]} \left (y^k \left (-e^{\int _1^x f(K[1]) \, dK[1]}\right ) \left (\int _1^x g(K[2]) \exp (-(1-k) \text {Integrate}[f(K[1]),\{K[1],1,K[2]\},\text {Assumptions}\to \text {True}]) \, dK[2]\right )+k y^k e^{\int _1^x f(K[1]) \, dK[1]} \left (\int _1^x g(K[2]) \exp (-(1-k) \text {Integrate}[f(K[1]),\{K[1],1,K[2]\},\text {Assumptions}\to \text {True}]) \, dK[2]\right )+y e^{k \int _1^x f(K[1]) \, dK[1]}\right )\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+( f(x)*y+g(x)*y^k )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {y}^{1-k}{{\rm e}^{ \left ( k-1 \right ) \int \!f \left ( x \right ) \,{\rm d}x}}+k\int \!{{\rm e}^{ \left ( k-1 \right ) \int \!f \left ( x \right ) \,{\rm d}x}}g \left ( x \right ) \,{\rm d}x-\int \!{{\rm e}^{ \left ( k-1 \right ) \int \!f \left ( x \right ) \,{\rm d}x}}g \left ( x \right ) \,{\rm d}x \right ) \]

____________________________________________________________________________________

61.3 problem number 3

problem number 562

Added Feb. 4, 2019.

Problem 2.8.1.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( y^2+f(x) y -a^2 -a f(x)\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f]; 
 pde = D[w[x, y], x] + (y^2 + f[x]*y - a^2 - a*f[x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+( y^2+f(x)*y -a^2 -a*f(x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {{{\rm e}^{\int \!f \left ( x \right ) \,{\rm d}x+2\,ax}}+y\int \!{{\rm e}^{\int \!f \left ( x \right ) \,{\rm d}x+2\,ax}}\,{\rm d}x-a\int \!{{\rm e}^{\int \!f \left ( x \right ) \,{\rm d}x+2\,ax}}\,{\rm d}x}{-a+y}} \right ) \]

____________________________________________________________________________________

61.4 problem number 4

problem number 563

Added Feb. 4, 2019.

Problem 2.8.1.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( y^2+x f(x) y + f(x)\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f]; 
 pde = D[w[x, y], x] + (y^2 + x*f[x]*y + f[x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+( y^2+x*f(x)*y + f(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{yx+1} \left ( yx\int \!{{\rm e}^{\int \!{\frac {f \left ( x \right ) {x}^{2}-2}{x}}\,{\rm d}x}}\,{\rm d}x+{{\rm e}^{\int \!{\frac {f \left ( x \right ) {x}^{2}-2}{x}}\,{\rm d}x}}x+\int \!{{\rm e}^{\int \!{\frac {f \left ( x \right ) {x}^{2}-2}{x}}\,{\rm d}x}}\,{\rm d}x \right ) } \right ) \]

____________________________________________________________________________________

61.5 problem number 5

problem number 564

Added Feb. 4, 2019.

Problem 2.8.1.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x - \left ( (k+1)x^k y^2-x^{k+1} f(x) y+f(x)\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f]; 
 pde = D[w[x, y], x] - ((k + 1)*x^k*y^2 - x^(k + 1)*f[x]*y + f[x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)-( (k+1)*x^k*y^2-x^(k+1)*f(x)*y+f(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{{x}^{k+1}y-1} \left ( y{x}^{k+1}\int \!{\frac {{{\rm e}^{\int \!{x}^{k+1}f \left ( x \right ) \,{\rm d}x}}}{{x}^{k}{x}^{2}}}\,{\rm d}xk+y{x}^{k+1}\int \!{\frac {{{\rm e}^{\int \!{x}^{k+1}f \left ( x \right ) \,{\rm d}x}}}{{x}^{k}{x}^{2}}}\,{\rm d}x-{{\rm e}^{\int \!{\frac {{x}^{k+1}f \left ( x \right ) x-2\,k-2}{x}}\,{\rm d}x}}{x}^{k+1}-\int \!{\frac {{{\rm e}^{\int \!{x}^{k+1}f \left ( x \right ) \,{\rm d}x}}}{{x}^{k}{x}^{2}}}\,{\rm d}xk-\int \!{\frac {{{\rm e}^{\int \!{x}^{k+1}f \left ( x \right ) \,{\rm d}x}}}{{x}^{k}{x}^{2}}}\,{\rm d}x \right ) } \right ) \]

____________________________________________________________________________________

61.6 problem number 6

problem number 565

Added Feb. 4, 2019.

Problem 2.8.1.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( f(x) y^2+a y-a b- b^2 f(x)\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f]; 
 pde = D[w[x, y], x] + (f[x]*y^2 + a*y - a*b - b^2*f[x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+( f(x)*y^2+a*y-a*b- b^2*f(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {{{\rm e}^{ax+2\,b\int \!f \left ( x \right ) \,{\rm d}x}}+y\int \!{{\rm e}^{ax+2\,b\int \!f \left ( x \right ) \,{\rm d}x}}f \left ( x \right ) \,{\rm d}x-b\int \!{{\rm e}^{ax+2\,b\int \!f \left ( x \right ) \,{\rm d}x}}f \left ( x \right ) \,{\rm d}x}{-b+y}} \right ) \]

____________________________________________________________________________________

61.7 problem number 7

problem number 566

Added Feb. 4, 2019.

Problem 2.8.1.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( f[x] y^2-a x^n f[x] y+a n x^{n-1}\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f]; 
 pde = D[w[x, y], x] + (f[x]*y^2 - a*x^n*f[x]*y + a*n*x^(n - 1))*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+( f(x)*y^2-a*x^n*f(x)*y+a*n*x^(n-1))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

61.8 problem number 8

problem number 567

Added Feb. 4, 2019.

Problem 2.8.1.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( f(x) y^2+a n x^{n-1}-a^2 x^{2 n} f(x)\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f]; 
 pde = D[w[x, y], x] + (f[x]*y^2 + a*n*x^(n - 1) - a^2*x^(2*n)*f[x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+(  f(x)*y^2+a*n*x^(n-1)-a^2*x^(2*n)*f(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

61.9 problem number 9

problem number 568

Added Feb. 4, 2019.

Problem 2.8.1.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( f(x) y^2+g(x) y-a^2 f(x)-a g(x)\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f]; 
 pde = D[w[x, y], x] + (f[x]*y^2 + g[x]*y - a^2*f[x] - a*g[x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+(  f(x)*y^2+g(x)* y-a^2*f(x)-a*g(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {{{\rm e}^{\int \!g \left ( x \right ) \,{\rm d}x+2\,a\int \!f \left ( x \right ) \,{\rm d}x}}+y\int \!{{\rm e}^{\int \!g \left ( x \right ) \,{\rm d}x+2\,a\int \!f \left ( x \right ) \,{\rm d}x}}f \left ( x \right ) \,{\rm d}x-a\int \!{{\rm e}^{\int \!g \left ( x \right ) \,{\rm d}x+2\,a\int \!f \left ( x \right ) \,{\rm d}x}}f \left ( x \right ) \,{\rm d}x}{-a+y}} \right ) \]

____________________________________________________________________________________

61.10 problem number 10

problem number 569

Added Feb. 4, 2019.

Problem 2.8.1.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( f(x) y^2+g(x) y+a n x^{n-1} - a x^n g(x)-a^2 x^{2 n} f(x)\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f]; 
 pde = D[w[x, y], x] + (f[x]*y^2 + g[x]*y + a*n*x^(n - 1) - a*x^n*g[x] - a^2*x^(2*n)*f[x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+(  f(x)*y^2+g(x)*y+a*n*x^(n-1) - a*x^n*g(x)-a^2*x^(2*n)*f(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

61.11 problem number 11

problem number 570

Added Feb. 4, 2019.

Problem 2.8.1.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( f(x) y^2-a x^n g(x) y+a n x^{n-1}+a^2 x^{2 n}(g(x)-f(x))\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f]; 
 pde = D[w[x, y], x] + (f[x]*y^2 - a*x^n*g*x*y + a*n*x^(n - 1) + a^2*x^(2*n)*(g*x - f*x))*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+( f(x)*y^2-a*x^n*g(x)*y+a*n*x^(n-1)+a^2*x^(2*n)*(g(x)-f(x)))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

61.12 problem number 12

problem number 571

Added Feb. 4, 2019.

Problem 2.8.1.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + \left ( f(x) y^2+n y+a x^{2 n} f(x)\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f]; 
 pde = x*D[w[x, y], x] + (f[x]*y^2 + n*y + a*x^(2*n)*f[x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}, Assumptions -> a > 0], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\tan ^{-1}\left (\frac {y x^{-n}}{\sqrt {a}}\right )-\sqrt {a} \int _1^x f(K[1]) K[1]^{n-1} \, dK[1]\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  x*diff(w(x,y),x)+( f(x)*y^2+n*y+a*x^(2*n)*f(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) assuming a>0),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( \sqrt {a}\int \!{x}^{n-1}f \left ( x \right ) \,{\rm d}x-\arctan \left ( {\frac {y{x}^{-n}}{\sqrt {a}}} \right ) \right ) \]

____________________________________________________________________________________

61.13 problem number 13

problem number 572

Added Feb. 4, 2019.

Problem 2.8.1.13 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + \left ( x^{2 n} f(x) y^2+(a x^n f(x)-n) y+b f(x)\right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v, f]; 
 pde = x*D[w[x, y], x] + (x^(2*n)*f[x]*y^2 + (a*x^n*f[x] - n)*y + b*f[x])*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde := x* diff(w(x,y),x)+( x^(2*n)* f(x)*y^2+(a*x^n*f(x)-n)*y+b*f(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {a}{\sqrt {{a}^{2} \left ( {a}^{2}-4\,b \right ) }} \left ( -\sqrt {{a}^{2} \left ( {a}^{2}-4\,b \right ) }\int \!{\frac {{x}^{n}f \left ( x \right ) }{x}}\,{\rm d}x-2\,a\arctanh \left ( {\frac {a \left ( 2\,{x}^{n}y+a \right ) }{\sqrt {{a}^{2} \left ( {a}^{2}-4\,b \right ) }}} \right ) \right ) } \right ) \]