60 HFOPDE, chapter 2.7.4

60.1 problem number 1
60.2 problem number 2
60.3 problem number 3
60.4 problem number 4
60.5 problem number 5
60.6 problem number 6
60.7 problem number 7
60.8 problem number 8
60.9 problem number 9
60.10 problem number 10
60.11 problem number 11
60.12 problem number 12

____________________________________________________________________________________

60.1 problem number 1

problem number 548

Added Feb. 1, 2019.

Problem 2.7.4.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( a \arccot ^k(\lambda x)+b \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v]; 
 pde = D[w[x, y], x] + (lambda*ArcCot[lambda*x]^k + b)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+(lambda*arccot(lambda*x)^k+b)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -bx+y-\int \!\lambda \, \left ( \pi /2-\arctan \left ( \lambda \,x \right ) \right ) ^{k}\,{\rm d}x \right ) \]

____________________________________________________________________________________

60.2 problem number 2

problem number 549

Added Feb. 1, 2019.

Problem 2.7.4.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( a \arccot ^k(\lambda y)+b \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v]; 
 pde = D[w[x, y], x] + (lambda*ArcCot[lambda*y]^k + b)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+(lambda*arccot(lambda*y)^k+b)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -\int \! \left ( \lambda \, \left ( \pi /2-\arctan \left ( y\lambda \right ) \right ) ^{k}+b \right ) ^{-1}\,{\rm d}y+x \right ) \]

____________________________________________________________________________________

60.3 problem number 3

problem number 550

Added Feb. 1, 2019.

Problem 2.7.4.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + k \arccot ^n(a x+b y+c) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v]; 
 pde = D[w[x, y], x] + k*ArcCot[a*x + b*y + c]^n*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+k*arccot(a*x+b*y+c)^n*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -\int ^{{\frac {ax+by}{b}}}\! \left ( k \left ( \pi /2-\arctan \left ( b{\it \_a}+c \right ) \right ) ^{n}b+a \right ) ^{-1}{d{\it \_a}}b+x \right ) \]

____________________________________________________________________________________

60.4 problem number 4

problem number 551

Added Feb. 1, 2019.

Problem 2.7.4.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + k \arccot ^k(\lambda x) \arccot ^n(\mu y) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v]; 
 pde = D[w[x, y], x] + a*ArcCot[lambda*x]^k*ArcCot[lambda*y]^n*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+a*arccot(lambda*x)^k*arccot(lambda*y)^n*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -\int \! \left ( \pi /2-\arctan \left ( \lambda \,x \right ) \right ) ^{k}\,{\rm d}x+\int \!{\frac { \left ( \pi /2-\arctan \left ( y\lambda \right ) \right ) ^{-n}}{a}}\,{\rm d}y \right ) \]

____________________________________________________________________________________

60.5 problem number 5

problem number 552

Added Feb. 1, 2019.

Problem 2.7.4.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( y^2+ \lambda (\arccot x)^n y - a^2 +a \lambda (\arccot x)^n \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v]; 
 pde = D[w[x, y], x] + (y^2 + lambda*ArcCot[x]^n*y - a^2 + a*lambda*ArcCot[x]^n)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+(y^2+lambda*arccot(x)^n*y - a^2 +a*lambda*arccot(x)^n)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{\frac {y\int \!{{\rm e}^{\lambda \,\int \! \left ( \pi /2-\arctan \left ( x \right ) \right ) ^{n}\,{\rm d}x-2\,ax}}\,{\rm d}x+\int \!{{\rm e}^{\lambda \,\int \! \left ( \pi /2-\arctan \left ( x \right ) \right ) ^{n}\,{\rm d}x-2\,ax}}\,{\rm d}xa+{{\rm e}^{\lambda \,\int \! \left ( \pi /2-\arctan \left ( x \right ) \right ) ^{n}\,{\rm d}x-2\,ax}}}{y+a}} \right ) \]

____________________________________________________________________________________

60.6 problem number 6

problem number 553

Added Feb. 1, 2019.

Problem 2.7.4.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( y^2+ \lambda x (\arccot x)^n y + \lambda (\arccot x)^n \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v]; 
 pde = D[w[x, y], x] + (y^2 + lambda*x*ArcCot[x]^n*y + lambda*ArcCot[x]^n)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+(y^2+lambda*x*arccot(x)^n*y +lambda*arccot(x)^n)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{yx+1} \left ( yx\int \!{{\rm e}^{\int \!{\frac { \left ( {\rm arccot} \left (x\right ) \right ) ^{n}\lambda \,{x}^{2}-2}{x}}\,{\rm d}x}}\,{\rm d}x+{{\rm e}^{\int \!{\frac { \left ( {\rm arccot} \left (x\right ) \right ) ^{n}\lambda \,{x}^{2}-2}{x}}\,{\rm d}x}}x+\int \!{{\rm e}^{\int \!{\frac { \left ( {\rm arccot} \left (x\right ) \right ) ^{n}\lambda \,{x}^{2}-2}{x}}\,{\rm d}x}}\,{\rm d}x \right ) } \right ) \]

____________________________________________________________________________________

60.7 problem number 7

problem number 554

Added Feb. 1, 2019.

Problem 2.7.4.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x - \left ( (k+1) x^k y^2- \lambda (\arccot x)^n (x^{k+1} y -1) \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v]; 
 pde = D[w[x, y], x] - ((k + 1)*x^k*y^2 - lambda*ArcCot[x]^n*(x^(k + 1)*y - 1))*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)-((k+1)*x^k*y^2- lambda*arccot(x)^n*(x^(k+1)*y-1))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{\frac {1}{{x}^{k+1}y-1} \left ( y{x}^{k+1}\int \!{\frac {{{\rm e}^{\lambda \,\int \!{x}^{k+1} \left ( \pi /2-\arctan \left ( x \right ) \right ) ^{n}\,{\rm d}x}}}{{x}^{k}{x}^{2}}}\,{\rm d}xk+y{x}^{k+1}\int \!{\frac {{{\rm e}^{\lambda \,\int \!{x}^{k+1} \left ( \pi /2-\arctan \left ( x \right ) \right ) ^{n}\,{\rm d}x}}}{{x}^{k}{x}^{2}}}\,{\rm d}x-{{\rm e}^{\int \!{\frac {{x}^{k+1} \left ( \pi /2-\arctan \left ( x \right ) \right ) ^{n}\lambda \,x-2\,k-2}{x}}\,{\rm d}x}}{x}^{k+1}-\int \!{\frac {{{\rm e}^{\lambda \,\int \!{x}^{k+1} \left ( \pi /2-\arctan \left ( x \right ) \right ) ^{n}\,{\rm d}x}}}{{x}^{k}{x}^{2}}}\,{\rm d}xk-\int \!{\frac {{{\rm e}^{\lambda \,\int \!{x}^{k+1} \left ( \pi /2-\arctan \left ( x \right ) \right ) ^{n}\,{\rm d}x}}}{{x}^{k}{x}^{2}}}\,{\rm d}x \right ) } \right ) \]

____________________________________________________________________________________

60.8 problem number 8

problem number 555

Added Feb. 1, 2019.

Problem 2.7.4.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( \lambda (\arccot x)^n y^2+a y + a b -b^2 \lambda (\arccot x)^n n \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v]; 
 pde = D[w[x, y], x] + (lambda*ArcCot[x]^n*y^2 + a*y + a*b - b^2*lambda*ArcCot[x]^n*n)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+(lambda*arccot(x)^n*y^2+a*y + a*b -b^2*lambda*arccot(x)^n*n )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

60.9 problem number 9

problem number 556

Added Feb. 1, 2019.

Problem 2.7.4.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( \lambda (\arccot x)^n y^2- b \lambda x^m(\arccot x)^n y+ b m x^{m-1} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v]; 
 pde = D[w[x, y], x] + (lambda*ArcCot[x]^n*y^2 - b*lambda*x^m*ArcCot[x]^n*y + b*m*x^(m - 1))*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+(lambda*arccot(x)^n*y^2- b*lambda*x^m*arccot(x)^n*y+ b*m*x^(m-1)  )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

60.10 problem number 10

problem number 557

Added Feb. 1, 2019.

Problem 2.7.4.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( \lambda (\arccot x)^n y^2+ b m x^{m-1} - \lambda b^2 x^{2 m} (\arccot x^n) \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v]; 
 pde = D[w[x, y], x] + (lambda*ArcCot[x]^n*y^2 + b*m*x^(m - 1) - lambda*b^2*x^(2*m)*ArcCot[x]^n)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {Failed} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+( lambda*arccot(x)^n*y^2+ b*m*x^(m-1) - lambda*b^2*x^(2*m)*arccot(x)^n )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ \text { sol=() } \]

____________________________________________________________________________________

60.11 problem number 11

problem number 558

Added Feb. 1, 2019.

Problem 2.7.4.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( \lambda (\arccot x)^n(y-a x^m-b)^2+a m x^{m-1} \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v]; 
 pde = D[w[x, y], x] + (lambda*ArcCot[x]^n*(y - a*x^m - b)^2 + a*m*x^(m - 1))*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  diff(w(x,y),x)+( lambda*arccot(x)^n*(y-a*x^m-b)^2+a*m*x^(m-1) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {-{x}^{m}\int \! \left ( {\rm arccot} \left (x\right ) \right ) ^{n}\lambda \,{\rm d}xa+y\int \! \left ( {\rm arccot} \left (x\right ) \right ) ^{n}\lambda \,{\rm d}x-\int \! \left ( {\rm arccot} \left (x\right ) \right ) ^{n}\lambda \,{\rm d}xb+1}{y-a{x}^{m}-b}} \right ) \]

____________________________________________________________________________________

60.12 problem number 12

problem number 559

Added Feb. 1, 2019.

Problem 2.7.4.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + \left ( \lambda (\arccot x)^n y^2+ k y+ \lambda b^2 x^{2 k} (\arccot x)^n \right ) w_y = 0 \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s, lambda, B, s, mu, d, g, B, v]; 
 pde = x*D[w[x, y], x] + (lambda*ArcCot[x]^n*y^2 + k*y + lambda*b^2*x^(2*k)*ArcCot[x]^n)*D[w[x, y], y] == 0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c';k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';v:='v'; 
pde :=  x*diff(w(x,y),x)+( lambda*arccot(x)^n*y^2+ k*y+ lambda*b^2*x^(2*k)*arccot(x)^n )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( \lambda \,b\int \! \left ( \pi /2-\arctan \left ( x \right ) \right ) ^{n}{x}^{k-1}\,{\rm d}x-\arctan \left ( {\frac {{x}^{-k}y}{b}} \right ) \right ) \]