27 Schrodinger PDE

27.1 Schrodinger PDE with zero potential (Logan p. 30)
27.2 Schrodinger PDE with initial and boundary conditions. Zero potential
27.3 Initial value problem with Dirichlet boundary conditions. Zero potential
27.4 Solve a Schrodinger equation with potential over the whole real line
27.5 Schrodinger equation, with initial conditions. Zero potential (Griffiths p. 47)
27.6 Schrodinger equation, with initial conditions. Infinite square well potential (Griffiths p. 47)
27.7 In 2 space dimensions

____________________________________________________________________________________

27.1 Schrodinger PDE with zero potential (Logan p. 30)

problem number 168

From page 30, David J Logan textbook, applied PDE textbook.

Solve \[ I h \frac {\partial f}{\partial t} = - \frac {h^2}{2 m} \frac {\partial ^2 f}{\partial x^2} \]

With boundary conditions

\begin {align*} f(0,t) &= 0\\ f(L,0) &=0 \end {align*}

Mathematica

ClearAll[f, t, x, L, m, h]; 
 pde = I*h*D[f[x, t], t] == -((h^2*D[f[x, t], {x, 2}])/(2*m)); 
 bc = {f[0, t] == 0, f[L, t] == 0}; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, f[x, t], {x, t}, Assumptions -> L > 0], 60*10]]; 
 sol = sol /. K[1] -> n;
 

\[ \left \{\left \{f(x,t)\to \sum _{n=1}^{\infty }e^{-\frac {i h n^2 \pi ^2 t}{2 L^2 m}} c_n \sin \left (\frac {n \pi x}{L}\right )\right \}\right \} \]

Maple

 
x:='x'; t:='t'; L:='L'; c:='c';f:='f'; 
interface(showassumed=0); 
pde:=I*h*diff(f(x,t),t)=-h^2/(2*m)*diff(f(x,t),x$2); 
bc:=f(0,t)=0,f(L,t)=0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],f(x,t)) assuming L>0),output='realtime'));
 

\[ f \left ( x,t \right ) =\sum _{n=1}^{\infty }{\it \_C1} \left ( n \right ) \sin \left ( {\frac {n\pi \,x}{L}} \right ) {{\rm e}^{{\frac {-i/2h{\pi }^{2}{n}^{2}t}{m{L}^{2}}}}} \]

____________________________________________________________________________________

27.2 Schrodinger PDE with initial and boundary conditions. Zero potential

problem number 169

Solve for \(f(x,y,t)\) \[ I \frac {\partial f}{\partial t} = - \frac {\hbar ^2}{2 m} \left ( \frac {\partial ^2 f}{\partial x^2} + \frac {\partial ^2 f}{\partial y^2} \right ) \]

With boundary conditions

\begin {align*} f(0,y,t) &= 0\\ f(1,y,t) &=0 \\ f(x,1,t) &=0 \\ f(x,0,t) &=0 \end {align*}

And initial conditions \(f(x,y,0)=\sqrt {2} \left ( \sin (2\pi x) \sin (\pi y) + \sin (\pi x) \sin (2 \pi y) \right )\)

Mathematica

ClearAll[f, t, x, y]; 
 pde = I*D[f[x, y, t], {t}] == -((hBar^2*Laplacian[f[x, y, t], {x, y}])/(2*m)); 
 initSum = f[x, y, 0] == Sqrt[2]*(Sin[2*Pi*x]*Sin[Pi*y] + Sin[Pi*x]*Sin[2*Pi*y]); 
 bcs = {f[0, y, t] == 0, f[1, y, t] == 0, f[x, 1, t] == 0, f[x, 0, t] == 0}; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bcs, initSum}, f[x, y, t], {x, y, t}], 60*10]];
 

\[ \left \{\left \{f(x,y,t)\to \sqrt {2} e^{-\frac {5 i \pi ^2 \text {hBar}^2 t}{2 m}} (\sin (2 \pi x) \sin (\pi y)+\sin (\pi x) \sin (2 \pi y))\right \}\right \} \]

Maple

 
x:='x'; t:='t'; y:='y'; hbar:='hbar';f:='f'; 
interface(showassumed=0); 
pde:=  I* diff(f(x,y,t),t) = -hBar^2/(2*m) * (diff(f(x,y,t),x$2) +  diff(f(x,y,t),y$2)); 
ic := f(x, y, 0) = sqrt(2)*(sin(2*Pi*x)*sin(Pi*y) + sin(Pi*x)*sin(2*Pi*y)); 
bc := f(0, y, t) = 0, 
      f(1, y, t) = 0, 
      f(x, 1, t) = 0, 
      f(x, 0, t) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic,bc],f(x,y,t))),output='realtime'));
 

\[ f \left ( x,y,t \right ) =\sqrt {2}\sin \left ( \pi \,x \right ) {{\rm e}^{{\frac {-5/2\,i{{\it hBar}}^{2}t{\pi }^{2}}{m}}}} \left ( 2\,\cos \left ( \pi \,x \right ) \sin \left ( \pi \,y \right ) +\sin \left ( 2\,\pi \,y \right ) \right ) \]

____________________________________________________________________________________

27.3 Initial value problem with Dirichlet boundary conditions. Zero potential

problem number 170

Taken from Mathematica DSolve help pages

Solve for \(f(x,t)\) \[ I \frac {\partial f}{\partial t} = - 2 \frac {\partial ^2 f}{\partial x^2} \]

With boundary conditions

\begin {align*} f(5,t) &= 0\\ f(10,t) &=0 \\ \end {align*}

And initial conditions \(f(x,2)=f(x)\) where \(f(x)=-350 + 155 x - 22 x^2 + x^3\)

Mathematica

ClearAll[g, f, t, x]; 
 pde = I*D[f[x, t], t] == -2*D[f[x, t], {x, 2}]; 
 g[x_] := -350 + 155*x - 22*x^2 + x^3; 
 ic = f[x, 2] == g[x]; 
 bc = {f[5, t] == 0, f[10, t] == 0}; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, f[x, t], {x, t}], 60*10]]; 
 sol = sol /. K[1] -> n;
 

\[ \left \{\left \{f(x,t)\to \sum _{n=1}^{\infty }\frac {100 \left (7+8 (-1)^n\right ) e^{-\frac {2}{25} i n^2 \pi ^2 (t-2)} \sin \left (\frac {1}{5} n \pi (x-5)\right )}{n^3 \pi ^3}\right \}\right \} \]

Maple

 
x:='x'; t:='t'; y:='y'; f:='f';g:='g'; 
pde:=I*diff(f(x,t),t)=-2*diff(f(x,t),x$2); 
bc:=f(5,t)=0,f(10,t)=0; 
g:=x->-350+155*x-22*x^2+x^3; 
ic:=f(x,2)=g(x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc,ic],f(x,t))),output='realtime'));
 

\[ f \left ( x,t \right ) =\sum _{n=1}^{\infty }{\frac { \left ( 800+700\, \left ( -1 \right ) ^{n} \right ) \sin \left ( 1/5\,n\pi \,x \right ) {{\rm e}^{-{\frac {2}{25}}\,i{\pi }^{2}{n}^{2} \left ( t-2 \right ) }}}{{n}^{3}{\pi }^{3}}} \]

____________________________________________________________________________________

27.4 Solve a Schrodinger equation with potential over the whole real line

problem number 171

Taken from Mathematica DSolve help pages

Solve for \(f(x,t)\) \[ I \frac {\partial f}{\partial t} = - \frac {\partial ^2 f}{\partial x^2} + 2 x^2 f(x,t) \]

With boundary conditions

\begin {align*} f(-\infty ,t) &= 0\\ f(\infty ,t) &=0 \end {align*}

Mathematica

ClearAll[f, t, x]; 
 pde = I*D[f[x, t], t] == -D[f[x, t], {x, 2}] + 2*x^2*f[x, t]; 
 bc = {f[-Infinity, t] == 0, f[Infinity, t] == 0}; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, f[x, t], {x, t}], 60*10]]; 
 sol = sol /. K[1] -> n;
 

\[ \left \{\left \{f(x,t)\to \sum _{n=0}^{\infty }e^{-\frac {x^2}{\sqrt {2}}-2 i \sqrt {2} \left (n+\frac {1}{2}\right ) t} c_n \text {HermiteH}\left (n,\sqrt [4]{2} x\right )\right \}\right \} \]

Maple

 
x:='x'; t:='t'; y:='y'; f:='f';g:='g'; 
pde:=I*diff(f(x,t),t)=-diff(f(x,t),x$2)+2*x^2*f(x,t); 
bc:=f(-infinity ,t)=0,f(infinity,t)=0; 
try 
  cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],f(x,t))),output='realtime')); 
catch: 
  sol:=(); 
  cpu_time :=0; 
end try;
 

\[ \text { sol=() } \] Maple does not support \(\infty \) in boundary conditions

____________________________________________________________________________________

27.5 Schrodinger equation, with initial conditions. Zero potential (Griffiths p. 47)

problem number 172

Taken from Introduction to Quantum mechanics, second edition, by David Griffiths, page 47.

Solve for \(f(x,t)\) \[ I h \frac {\partial f}{\partial t} = - \frac {h^2}{2 m} \frac {\partial ^2 f}{\partial x^2} \]

With initial conditions \(f(x,0) = A x (a-x)\) for \(0\leq x \leq a\) and zero otherwise.

Mathematica

ClearAll[x, t, f, a, A, m, h]; 
 ic = Piecewise[{{A*x*(a - x), 0 <= x <= a}, {0, True}}]; 
 pde = I*h*D[f[x, t], t] == -((h^2*D[f[x, t], {x, 2}])/(2*m)); 
 sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, f[x, 0] == ic}, f[x, t], {x, t}, Assumptions -> a > 0], 60*10]];
 

\[ \left \{\left \{f(x,t)\to \frac {\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} A \sqrt {h} \sqrt {t} \left (-i \sqrt {\pi } m x^2 \text {Erfi}\left (\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {m} (a-x)}{\sqrt {h} \sqrt {t}}\right )+i \sqrt {\pi } a m x \text {Erfi}\left (\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {m} (a-x)}{\sqrt {h} \sqrt {t}}\right )+i \sqrt {\pi } a m x \text {Erfi}\left (\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {m} x}{\sqrt {h} \sqrt {t}}\right )+\sqrt {\pi } h t \text {Erfi}\left (\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {m} (a-x)}{\sqrt {h} \sqrt {t}}\right )-(1+i) a \sqrt {h} \sqrt {m} \sqrt {t} e^{\frac {i m x^2}{2 h t}}-(1+i) \sqrt {h} \sqrt {m} \sqrt {t} x e^{\frac {i m (a-x)^2}{2 h t}}-i \sqrt {\pi } m x^2 \text {Erfi}\left (\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {m} x}{\sqrt {h} \sqrt {t}}\right )+\sqrt {\pi } h t \text {Erfi}\left (\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {m} x}{\sqrt {h} \sqrt {t}}\right )+(1+i) \sqrt {h} \sqrt {m} \sqrt {t} x e^{\frac {i m x^2}{2 h t}}\right )}{\sqrt {2 \pi } m^{3/2} \sqrt {\frac {h t}{m}}}\right \}\right \} \]

Maple

 
x:='x'; t:='t'; f:='f'; a:='a';A:='A';h:='h';m:='m'; 
ic:=f(x,0)=piecewise(0<=x and x<=a,A*x*(a-x),0); 
pde:=I*h*diff(f(x,t),t) = -h^2/(2*m)*diff(f(x,t),x$2); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',dsolve([pde,ic],f(x,t)) assuming a>0),output='realtime')); 
sol:=convert(sol,Int);
 

\[ f \left ( x,t \right ) =-2\,A \left ( {\frac {i/2}{\pi }\int _{-\infty }^{\infty }\!{\frac {1}{{s}^{3}}{{\rm e}^{{\frac {-i/2h{s}^{2}t}{m}}+isx}}}\,{\rm d}s}-{\frac {i/2}{\pi }\int _{-\infty }^{\infty }\!{\frac {1}{{s}^{3}}{{\rm e}^{{\frac {-i/2s \left ( hst+2\,am \right ) }{m}}+isx}}}\,{\rm d}s}+1/4\,{\frac {a}{\pi }\int _{-\infty }^{\infty }\!{\frac {1}{{s}^{2}}{{\rm e}^{{\frac {-i/2h{s}^{2}t}{m}}+isx}}}\,{\rm d}s}+1/4\,{\frac {a}{\pi }\int _{-\infty }^{\infty }\!{\frac {1}{{s}^{2}}{{\rm e}^{{\frac {-i/2s \left ( hst+2\,am \right ) }{m}}+isx}}}\,{\rm d}s} \right ) \]

____________________________________________________________________________________

27.6 Schrodinger equation, with initial conditions. Infinite square well potential (Griffiths p. 47)

problem number 173

Taken from Introduction to Quantum mechanics, second edition, by David Griffiths, page 47. This is the same as the above problem but has an extra \(V(x) f(x,t)\) terms where \(V(x)\) is the infinite square well potential defined by \(V(x)=0\) if \(0\leq x \leq a\) and \(V(x)=\infty \) otherwise.

Solve for \(f(x,t)\) \[ I \hslash \frac {\partial f}{\partial t} = - \frac {\hslash ^2}{2 m} \frac {\partial ^2 f}{\partial x^2} + V(x) f(x,t) \]

With initial conditions \(f(x,0) = A x (a-x)\) for \(0\leq x \leq a\) and zero otherwise.

Mathematica

ClearAll[x, y, t, f, m]; 
 ic = f[x, y, 0] == Sqrt[2]*(Sin[2*Pi*x]*Sin[Pi*y] + Sin[Pi*x]*Sin[3*Pi*y]); 
 bc = {f[0, y, t] == 0, f[1, y, t] == 0, f[x, 1, t] == 0, f[x, 0, t] == 0}; 
 pde = I*h*D[f[x, y, t], t] == -((h^2*(D[f[x, y, t], {x, 2}] + D[f[x, y, t], {y, 2}]))/(2*m)); 
 sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, f[x, y, t], {x, y, t}], 60*10]];
 

\[ \left \{\left \{f(x,y,t)\to \sqrt {2} e^{-\frac {5 i \pi ^2 h t}{m}} \left (\sin (\pi x) \sin (3 \pi y)+\sin (2 \pi x) \sin (\pi y) e^{\frac {5 i \pi ^2 h t}{2 m}}\right )\right \}\right \} \]

Maple

 
x:='x'; t:='t'; f:='f'; a:='a';A:='A';h:='h';m:='m'; 
V:=x->piecewise(0<=x and x<=a,0,infinity); 
ic:=f(x,0)=piecewise(0<=x and x<=a,A*x*(a-x),0); 
pde:=I*h*diff(f(x,t),t)=-h^2/(2*m)*diff(f(x,t),x$2) +V(x)*f(x,t); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic],f(x,t)) assuming a>0),output='realtime'));
 

\[ \text {Bad latex generated} \]

____________________________________________________________________________________

27.7 In 2 space dimensions

problem number 174

Added December 20, 2018.

Example 28, taken from https://www.mapleprimes.com/posts/209970-Exact-Solutions-For-PDE-And-Boundary--Initial-Conditions-2018

Solve for \(f(x,y,t)\) \[ I \hslash \frac {\partial f}{\partial t} = - \frac {\hslash ^2}{2 m} \left ( \frac {\partial ^2 f}{\partial x^2} + \frac {\partial ^2 f}{\partial y^2} \right ) \]

With initial conditions \(f(x,y,0) = \sqrt {2} \left ( \sin (2 \pi x) \sin (\pi y)+ \sin (\pi x) \sin (3 \pi y) \right )\) and boundary conditions \begin {align*} f(0,y,t) &= 0 \\ f(1,y,t) &= 0 \\ f(x,1,t) &= 0 \\ f(x,0,t) &= 0 \end {align*}

Mathematica

ClearAll[x, t, f, a, A, m, h]; 
 v[x_] = Piecewise[{{0, 0 <= x <= a}}, Infinity]; 
 ic = Piecewise[{{A*x*(a - x), 0 <= x <= a}, {0, True}}]; 
 ode = I*h*D[f[x, t], t] == -((h^2*D[f[x, t], {x, 2}])/(2*m)) + v[x]*f[x, t]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[{ode, f[x, 0] == ic}, f[x, t], {x, t}, Assumptions -> a > 0], 60*10]];
 

\[ \text {Failed} \]

Maple

 
x:='x'; t:='t'; f:='f'; y:='y';m:='m'; 
pde := I*hbar* diff(f(x, y, t), t) = - hbar^2/(2*m)*  (diff(f(x, y, t), x$2)+diff(f(x, y, t), y$2)); 
ic := f(x, y, 0) = sqrt(2)*(sin(2*Pi*x)*sin(Pi*y)+sin(Pi*x)*sin(3*Pi*y)); 
bc:= f(0, y, t) = 0, f(1, y, t) = 0, f(x, 1, t) = 0, f(x, 0, t) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, ic,bc],f(x,y,t))),output='realtime'));
 

\[ f \left ( x,y,t \right ) =\sqrt {2}\sin \left ( \pi \,x \right ) \left ( 2\,{{\rm e}^{{\frac {-5/2\,i{\it hbar}\,t{\pi }^{2}}{m}}}}\cos \left ( \pi \,x \right ) \sin \left ( \pi \,y \right ) +\sin \left ( 3\,\pi \,y \right ) {{\rm e}^{{\frac {-5\,i{\it hbar}\,t{\pi }^{2}}{m}}}} \right ) \]