26 Wave PDE in 3D Cylindrical coordinates

26.1 No initial and no boundary conditions given

____________________________________________________________________________________

26.1 No initial and no boundary conditions given

problem number 167

Added Jan 10, 2019.

Solve for u(r,ϕ,z,t) the wave PDE in 3D

utt=c22u

Mathematica

ClearAll[u, t, r, z, phi]; 
 lap = Laplacian[u[r, phi, z, t], {r, phi, z}, "Cylindrical"]; 
 pde = D[u[r, phi, z, t], {t, 2}] == c^2*lap; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, u[r, phi, z, t], {r, phi, z, t}], 60*10]];
 

Failed

Maple

 
u:='u';t:='t'; phi:='phi';r:='r';z:='z'; 
lap:=VectorCalculus:-Laplacian( u(r,phi,z,t), 'cylindrical'[r,phi,z] ); 
pde:= diff(u(r,phi,z,t),t$2)= c^2* lap; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,u(r,phi,z,t),'build')),output='realtime')); 
sol:=simplify(sol);
 

u(r,ϕ,z,t)=e_c2ϕ_c3z_c4t(_C1BesselJ(_c2,_c3c2_c4rc)+_C2BesselY(_c2,_c3c2_c4rc))(_C7_C5_C3e2_c2ϕ+2_c3z+2_c4t+_C8_C3_C5e2_c2ϕ+2_c3z+_C6_C7_C3e2_c2ϕ+2_c4t+_C7_C4_C5e2_c3z+2_c4t+_C6_C8_C3e2_c2ϕ+(_C8_C5e2_c3z+_C6(e2_c4t_C7+_C8))_C4)