151 HFOPDE, chapter 6.2.2

151.1 Problem 1
151.2 Problem 2
151.3 Problem 3
151.4 Problem 4
151.5 Problem 5
151.6 Problem 6
151.7 Problem 7
151.8 Problem 8
151.9 Problem 9
151.10 Problem 10
151.11 Problem 11
151.12 Problem 12
151.13 Problem 13
151.14 Problem 14
151.15 Problem 15
151.16 Problem 16
151.17 Problem 17
151.18 Problem 18
151.19 Problem 19
151.20 Problem 20
151.21 Problem 21
151.22 Problem 22
151.23 Problem 23
151.24 Problem 24
151.25 Problem 25
151.26 Problem 26
151.27 Problem 27
151.28 Problem 28
151.29 Problem 29

____________________________________________________________________________________

151.1 Problem 1

problem number 1197

Added April 14, 2019.

Problem Chapter 6.2.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +(a_1 x y+b_1 x^2+c_1 x) w_y + (a_2 x y+b_2 x^2+c_2 x) w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  D[w[x, y,z], x] +(a1*x*y+b1*x^2+c1*x)*D[w[x, y,z], y] +(a2*x*y+b2*x^2+c2*x)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {-2 \text {a1} \text {b2} x^3-3 \text {a1} \text {c2} x^2+6 \text {a1} z+2 \text {a2} \text {b1} x^3+3 \text {a2} \text {c1} x^2-6 \text {a2} y}{6 \text {a1}},\frac {e^{-\frac {\text {a1} x^2}{2}} (\text {a1} y+\text {b1} x+\text {c1})}{\text {a1}}-\frac {\sqrt {\frac {\pi }{2}} \text {b1} \text {Erf}\left (\frac {\sqrt {\text {a1}} x}{\sqrt {2}}\right )}{\text {a1}^{3/2}}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=   diff(w(x,y,z),x)+(a1*x*y+b1*x^2+c1*x)*diff(w(x,y,z),y)+ (a2*x*y+b2*x^2+c2*x)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac { \left ( {{\it a1}}^{3/2}y+\sqrt {{\it a1}} \left ( {\it b1}\,x+{\it c1} \right ) \right ) \sqrt {\pi }{{\rm e}^{-1/2\,{\it a1}\,{x}^{2}}}-1/2\,\erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}x \right ) {\it b1}\,\sqrt {2}\pi }{\sqrt {\pi }{{\it a1}}^{3/2}}},-1/3\,{\frac {1}{{{\it a1}}^{2}} \left ( 3\,{\frac { \left ( {{\it a1}}^{3/2}y+\sqrt {{\it a1}} \left ( {\it b1}\,x+{\it c1} \right ) \right ) {\it a2}\,{{\rm e}^{1/2\,{\it a1}\,{x}^{2}}}{{\rm e}^{-1/2\,{\it a1}\,{x}^{2}}}}{\sqrt {{\it a1}}}\sqrt {{\frac {{\it a1}}{\pi }}}}-3/2\,\sqrt {2}\erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}x \right ) {\it a2}\,{\it b1}\, \left ( {\frac {\sqrt {\pi }}{\sqrt {{\it a1}}}\sqrt {{\frac {{\it a1}}{\pi }}}}-1 \right ) {{\rm e}^{1/2\,{\it a1}\,{x}^{2}}}+\sqrt {{\frac {{\it a1}}{\pi }}} \left ( \left ( {\it b2}\,{x}^{3}+3/2\,{x}^{2}{\it c2}-3\,z \right ) {{\it a1}}^{2}-{x}^{2}{\it a2}\, \left ( {\it b1}\,x+3/2\,{\it c1} \right ) {\it a1}-3\,{\it a2}\,{\it b1}\,x \right ) \right ) {\frac {1}{\sqrt {{\frac {{\it a1}}{\pi }}}}}} \right ) \]

____________________________________________________________________________________

151.2 Problem 2

problem number 1198

Added April 14, 2019.

Problem Chapter 6.2.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +(a_1 x y+b_1 x^2+c_1 x) w_y + (a_2 x z+b_2 x^2+c_2 x) w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  D[w[x, y,z], x] +(a1*x*y+b1*x^2+c1*x)*D[w[x, y,z], y] +(a2*x*z+b2*x^2+c2*x)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {e^{-\frac {\text {a1} x^2}{2}} (\text {a1} y+\text {b1} x+\text {c1})}{\text {a1}}-\frac {\sqrt {\frac {\pi }{2}} \text {b1} \text {Erf}\left (\frac {\sqrt {\text {a1}} x}{\sqrt {2}}\right )}{\text {a1}^{3/2}},\frac {e^{-\frac {\text {a2} x^2}{2}} (\text {a2} z+\text {b2} x+\text {c2})}{\text {a2}}-\frac {\sqrt {\frac {\pi }{2}} \text {b2} \text {Erf}\left (\frac {\sqrt {\text {a2}} x}{\sqrt {2}}\right )}{\text {a2}^{3/2}}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=   diff(w(x,y,z),x)+(a1*x*y+b1*x^2+c1*x)*diff(w(x,y,z),y)+ (a2*x*z+b2*x^2+c2*x)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac { \left ( {{\it a1}}^{3/2}y+\sqrt {{\it a1}} \left ( {\it b1}\,x+{\it c1} \right ) \right ) \sqrt {\pi }{{\rm e}^{-1/2\,{\it a1}\,{x}^{2}}}-1/2\,\erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}x \right ) {\it b1}\,\sqrt {2}\pi }{\sqrt {\pi }{{\it a1}}^{3/2}}},{\frac { \left ( {{\it a2}}^{3/2}z+\sqrt {{\it a2}} \left ( {\it b2}\,x+{\it c2} \right ) \right ) \sqrt {\pi }{{\rm e}^{-1/2\,{x}^{2}{\it a2}}}-1/2\,{\it b2}\,\erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a2}}x \right ) \sqrt {2}\pi }{\sqrt {\pi }{{\it a2}}^{3/2}}} \right ) \]

____________________________________________________________________________________

151.3 Problem 3

problem number 1199

Added April 14, 2019.

Problem Chapter 6.2.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +(a_1 x y+b_1 x^2+c_1 x) w_y + (a_2 y z+b_2 y^2+c_2 y) w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  D[w[x, y,z], x] +(a1*x*y+b1*x^2+c1*x)*D[w[x, y,z], y] +(a2*y*z+b2*y^2+c2*y)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \text {\$Aborted} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=   diff(w(x,y,z),x)+(a1*x*y+b1*x^2+c1*x)*diff(w(x,y,z),y)+ (a2*y*z+b2*y^2+c2*y)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac { \left ( {{\it a1}}^{3/2}y+\sqrt {{\it a1}} \left ( {\it b1}\,x+{\it c1} \right ) \right ) \sqrt {\pi }{{\rm e}^{-1/2\,{\it a1}\,{x}^{2}}}-1/2\,\erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}x \right ) {\it b1}\,\sqrt {2}\pi }{\sqrt {\pi }{{\it a1}}^{3/2}}},-1/2\,\int ^{x}\!2\,{\frac { \left ( -2\,{\it \_f}\,{\it b1}\,{\it b2}+{\it c2}\,{\it a1}-2\,{\it b2}\,{\it c1} \right ) \left ( \pi \, \left ( {{\it a1}}^{3/2}y+\sqrt {{\it a1}} \left ( {\it b1}\,x+{\it c1} \right ) \right ) {{\rm e}^{-1/2\,{\it a1}\,{x}^{2}}}-1/2\,\sqrt {2}{\pi }^{3/2}{\it b1}\, \left ( \erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}x \right ) -\erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}{\it \_f} \right ) \right ) \right ) {\it a1}\,{{\rm e}^{1/2\,{\it a1}\,{{\it \_f}}^{2}}}+\pi \,\sqrt {{\it a1}}{{\rm e}^{{\it a1}\,{{\it \_f}}^{2}}} \left ( {{\it a1}}^{3/2}y+\sqrt {{\it a1}} \left ( {\it b1}\,x+{\it c1} \right ) \right ) ^{2}{\it b2}\, \left ( {{\rm e}^{-1/2\,{\it a1}\,{x}^{2}}} \right ) ^{2}-{\pi }^{3/2} \left ( \erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}x \right ) -\erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}{\it \_f} \right ) \right ) \sqrt {{\it a1}}\sqrt {2}{{\rm e}^{{\it a1}\,{{\it \_f}}^{2}}}{\it b1}\, \left ( {{\it a1}}^{3/2}y+\sqrt {{\it a1}} \left ( {\it b1}\,x+{\it c1} \right ) \right ) {\it b2}\,{{\rm e}^{-1/2\,{\it a1}\,{x}^{2}}}-\pi \, \left ( -1/2\, \left ( \erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}{\it \_f} \right ) \right ) ^{2}{{\it b1}}^{2}{\it b2}\,{{\rm e}^{{\it a1}\,{{\it \_f}}^{2}}}\pi \,\sqrt {{\it a1}}+\sqrt {{\it a1}}{{\rm e}^{{\it a1}\,{{\it \_f}}^{2}}}\erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}x \right ) \erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}{\it \_f} \right ) \pi \,{{\it b1}}^{2}{\it b2}-1/2\,\sqrt {{\it a1}}{{\rm e}^{{\it a1}\,{{\it \_f}}^{2}}} \left ( \erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}x \right ) \right ) ^{2}\pi \,{{\it b1}}^{2}{\it b2}+ \left ( {\it \_f}\,{\it b1}+{\it c1} \right ) \left ( -{\it b2}\, \left ( {\it \_f}\,{\it b1}+{\it c1} \right ) {{\it a1}}^{3/2}+{{\it a1}}^{5/2}{\it c2} \right ) \right ) }{{{\it a1}}^{7/2}\pi }{{\rm e}^{-1/2\,{\frac {{\it a2}\,\int \! \left ( \left ( 2\,{{\it a1}}^{3/2}y+2\,\sqrt {{\it a1}} \left ( {\it b1}\,x+{\it c1} \right ) \right ) {{\rm e}^{-1/2\,{\it a1}\,{x}^{2}}}-\sqrt {\pi }{\it b1}\,\sqrt {2} \left ( \erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}x \right ) -\erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}{\it \_f} \right ) \right ) \right ) {{\rm e}^{1/2\,{\it a1}\,{{\it \_f}}^{2}}}-2\,\sqrt {{\it a1}} \left ( {\it \_f}\,{\it b1}+{\it c1} \right ) \,{\rm d}{\it \_f}}{{{\it a1}}^{3/2}}}}}}{d{\it \_f}}+z{{\rm e}^{-1/2\,{\frac {1}{\sqrt {\pi }}\int ^{x}\!2\,{\frac {{\it a2}\, \left ( {{\rm e}^{1/2\,{\it a1}\,{{\it \_b}}^{2}}} \left ( {{\it a1}}^{3/2}y+\sqrt {{\it a1}} \left ( {\it b1}\,x+{\it c1} \right ) \right ) \sqrt {\pi }{{\rm e}^{-1/2\,{\it a1}\,{x}^{2}}}-1/2\,{\it b1}\,\sqrt {2}\pi \, \left ( \erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}x \right ) -\erf \left ( 1/2\,\sqrt {2}\sqrt {{\it a1}}{\it \_b} \right ) \right ) {{\rm e}^{1/2\,{\it a1}\,{{\it \_b}}^{2}}}-\sqrt {\pi }\sqrt {{\it a1}} \left ( {\it \_b}\,{\it b1}+{\it c1} \right ) \right ) }{{{\it a1}}^{3/2}}}{d{\it \_b}}}}} \right ) \]

____________________________________________________________________________________

151.4 Problem 4

problem number 1200

Added April 14, 2019.

Problem Chapter 6.2.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x +(a_1 x y+b_1 y^2) w_y + (a_2 x z+b_2 z^2) w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  D[w[x, y,z], x] +(a1*x+b1*y^2)*D[w[x, y,z], y] +(a2*x*z+b2*z^2)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (-\frac {2 \left (\text {b1} x y \text {BesselJ}\left (\frac {1}{3},\frac {2}{3} \sqrt {\text {a1}} \sqrt {\text {b1}} x^{3/2}\right )+\sqrt {\text {a1}} \sqrt {\text {b1}} x^{3/2} \text {BesselJ}\left (-\frac {2}{3},\frac {2}{3} \sqrt {\text {a1}} \sqrt {\text {b1}} x^{3/2}\right )\right )}{(2 \text {b1} x y+1) \text {BesselJ}\left (-\frac {1}{3},\frac {2}{3} \sqrt {\text {a1}} \sqrt {\text {b1}} x^{3/2}\right )+\sqrt {\text {a1}} \sqrt {\text {b1}} x^{3/2} \text {BesselJ}\left (-\frac {4}{3},\frac {2}{3} \sqrt {\text {a1}} \sqrt {\text {b1}} x^{3/2}\right )-\sqrt {\text {a1}} \sqrt {\text {b1}} x^{3/2} \text {BesselJ}\left (\frac {2}{3},\frac {2}{3} \sqrt {\text {a1}} \sqrt {\text {b1}} x^{3/2}\right )},\frac {\sqrt {\frac {\pi }{2}} \text {b2} \text {Erfi}\left (\frac {\sqrt {\text {a2}} x}{\sqrt {2}}\right )}{\sqrt {\text {a2}}}+\frac {e^{\frac {\text {a2} x^2}{2}}}{z}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=   diff(w(x,y,z),x)+(a1*x+b1*y^2)*diff(w(x,y,z),y)+ (a2*x*z+b2*z^2)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {y\AiryBi \left ( -\sqrt [3]{{\it a1}\,{\it b1}}x \right ) {\it b1}-\sqrt [3]{{\it a1}\,{\it b1}}\AiryBi \left ( 1,-\sqrt [3]{{\it a1}\,{\it b1}}x \right ) }{-y\AiryAi \left ( -\sqrt [3]{{\it a1}\,{\it b1}}x \right ) {\it b1}+\sqrt [3]{{\it a1}\,{\it b1}}\AiryAi \left ( 1,-\sqrt [3]{{\it a1}\,{\it b1}}x \right ) }},{\frac {\sqrt {\pi }\erf \left ( 1/2\,\sqrt {-2\,{\it a2}}x \right ) z{\it b2}+\sqrt {-2\,{\it a2}}{{\rm e}^{1/2\,{x}^{2}{\it a2}}}}{\sqrt {-2\,{\it a2}}z}} \right ) \]

____________________________________________________________________________________

151.5 Problem 5

problem number 1201

Added April 14, 2019.

Problem Chapter 6.2.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + x z w_y - x y w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  a*D[w[x, y,z], x] +x*z*D[w[x, y,z], y] -x*y*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (y \sin \left (\frac {x^2}{2 a}\right )+z \cos \left (\frac {x^2}{2 a}\right ),y \cos \left (\frac {x^2}{2 a}\right )-z \sin \left (\frac {x^2}{2 a}\right )\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=   a*diff(w(x,y,z),x)+x*z*diff(w(x,y,z),y)- x*y*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {y}^{2}+{z}^{2},-2\,a\arctan \left ( {\frac {y}{z}} \right ) +{x}^{2} \right ) \]

____________________________________________________________________________________

151.6 Problem 6

problem number 1202

Added April 14, 2019.

Problem Chapter 6.2.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ c x w_x + c y w_y +(a x^2+b y^2) w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  c*x*D[w[x, y,z], x] +c*y*D[w[x, y,z], y] +(a*x^2+b*y^2)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {y}{x},-\frac {a x^2+b y^2-2 c z}{2 c}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=   c*x*diff(w(x,y,z),x)+c*y*diff(w(x,y,z),y)+(a*x^2+b*y^2)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {y}{x}},1/2\,{\frac {-a{x}^{2}-b{y}^{2}+2\,cz}{c}} \right ) \]

____________________________________________________________________________________

151.7 Problem 7

problem number 1203

Added April 14, 2019.

Problem Chapter 6.2.2.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ c z w_x -a(2 a x-b)y w_y +a (2 a x-b)z w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  c*z*D[w[x, y,z], x] -a*(2*a*x-b)*y*D[w[x, y,z], y] +a*(2*a*x-b)*z*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (c y z,\frac {-a^2 x^2+a b x+c z}{c}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=   c*z*diff(w(x,y,z),x)-a*(2*a*x-b)*diff(w(x,y,z),y)+a*(2*a*x-b)*z*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {-{a}^{2}{x}^{2}+axb+cz}{c}},\ln \left ( cz \right ) +y \right ) \]

____________________________________________________________________________________

151.8 Problem 8

problem number 1204

Added April 14, 2019.

Problem Chapter 6.2.2.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a c x^2 w_x -a c x y w_y -b^2 y^2 w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  a*c*x^2*D[w[x, y,z], x] -a*c*x*y*D[w[x, y,z], y] -b^2*y^2*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (x y,z-\frac {b^2 y^2}{3 a c x}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=    a*c*x^2*diff(w(x,y,z),x) -a*c*x*y*diff(w(x,y,z),y)-b^2*y^2*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( yx,1/3\,{\frac {3\,zac{x}^{3}-{b}^{2}{x}^{2}{y}^{2}}{ac{x}^{3}}} \right ) \]

____________________________________________________________________________________

151.9 Problem 9

problem number 1205

Added April 14, 2019.

Problem Chapter 6.2.2.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a x^2 w_x +b y^2 w_y +c z^2 w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  a*x^2*D[w[x, y,z], x] +b*y^2*D[w[x, y,z], y] +c*z^2*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {b}{a x}-\frac {1}{y},\frac {c}{a x}-\frac {1}{z}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=    a*x^2*diff(w(x,y,z),x) +b*y^2*diff(w(x,y,z),y)+c*z^2*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {ax-by}{yax}},{\frac {ax-cz}{zax}} \right ) \]

____________________________________________________________________________________

151.10 Problem 10

problem number 1206

Added April 14, 2019.

Problem Chapter 6.2.2.10, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a b x^2 w_x +c z^2 w_y +2 a b x z w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  a*b*x^2*D[w[x, y,z], x] +c*z^2*D[w[x, y,z], y] +2*a*b*x*z*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {z}{x^2},y-\frac {c z^2}{3 a b x}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=    a*b*x^2*diff(w(x,y,z),x) +c*z^2*diff(w(x,y,z),y)+2*a*b*x*z*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {z}{{x}^{2}}},1/3\,{\frac {3\,abxy-c{z}^{2}}{axb}} \right ) \]

____________________________________________________________________________________

151.11 Problem 11

problem number 1207

Added April 14, 2019.

Problem Chapter 6.2.2.11, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ b c x y w_x +a^2 c x^2 w_y - b y (2 a x+c z)w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  b*c*x*y*D[w[x, y,z], x] +a^2*c*x^2*D[w[x, y,z], y] -b*y*(2*a*x+c*z)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {b y^2-a^2 x^2}{2 b},\frac {x (a x+c z)}{c}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=     b*c*x*y*diff(w(x,y,z),x) +a^2*c*x^2*diff(w(x,y,z),y)-b*y*(2*a*x+c*z)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {-{a}^{2}{x}^{2}+b{y}^{2}}{b}},{\frac { \left ( ax+cz \right ) x}{c}} \right ) \]

____________________________________________________________________________________

151.12 Problem 12

problem number 1208

Added April 14, 2019.

Problem Chapter 6.2.2.12, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ b c x y w_x +c^2 y z w_y + b^2 y^2 w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  b*c*x*y*D[w[x, y,z], x] +c^2*y*z*D[w[x, y,z], y] +b^2*y^2*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {i \left (b \left (x^2-1\right ) y-c \left (x^2+1\right ) z\right )}{2 b x},\frac {b \left (x^2+1\right ) y-c \left (x^2-1\right ) z}{2 b x}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde := b*c*x*y*diff(w(x,y,z),x) +c^2*y*z*diff(w(x,y,z),y)+b^2*y^2*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {-{y}^{2}{b}^{2}+{c}^{2}{z}^{2}}{{c}^{2}}},x \left ( {\it csgn} \left ( b \right ) by+cz \right ) ^{-{\it csgn} \left ( b \right ) } \right ) \]

____________________________________________________________________________________

151.13 Problem 13

problem number 1209

Added April 14, 2019.

Problem Chapter 6.2.2.13, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x y w_x +y(y-a)w_y +z(y-a) w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  x*y*D[w[x, y,z], x] +y*(y-a)*D[w[x, y,z], y] +z*(y-a)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {y-a}{x},\frac {z}{y}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde := x*y*diff(w(x,y,z),x) +y*(y-a)*diff(w(x,y,z),y)+z*(y-a)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {y-a}{x}},{\frac {z}{y}} \right ) \]

____________________________________________________________________________________

151.14 Problem 14

problem number 1210

Added April 14, 2019.

Problem Chapter 6.2.2.14, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ b y^2 w_x -a x y w_y +c x z w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  b*y^2*D[w[x, y,z], x] -a*x*y*D[w[x, y,z], y] +c*x*z*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {a x^2+b y^2}{2 b},z \left (-b y^2\right )^{\frac {c}{2 a}}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde := b*y^2*diff(w(x,y,z),x) -a*x*y*diff(w(x,y,z),y)+c*x*z*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {a{x}^{2}+b{y}^{2}}{b}},z \left ( -b{y}^{2} \right ) ^{1/2\,{\frac {c}{a}}} \right ) \]

____________________________________________________________________________________

151.15 Problem 15

problem number 1211

Added April 14, 2019.

Problem Chapter 6.2.2.15, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ c x z w_x + 2 a x y w_y -(2 a x+c z) z w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  c*x*z*D[w[x, y,z], x] +2*a*x*y*D[w[x, y,z], y] -(2*a*x+c*z)*z*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (-c x y z,x \left (\frac {a x}{c}+z\right )\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde := c*x*z*diff(w(x,y,z),x) +2*a*x*y*diff(w(x,y,z),y)-(2*a*x+c*z)*z*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac { \left ( ax+cz \right ) x}{c}},-cxyz \right ) \]

____________________________________________________________________________________

151.16 Problem 16

problem number 1212

Added April 14, 2019.

Problem Chapter 6.2.2.16, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ c x z w_x + c y z w_y +a b x y w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  c*x*z*D[w[x, y,z], x] +c*y*z*D[w[x, y,z], y] +a*b*x*y*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {y}{x},\frac {c z^2-a b x y}{2 c}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde := c*x*z*diff(w(x,y,z),x) +c*y*z*diff(w(x,y,z),y)+a*b*x*y*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {y}{x}},{\frac {-abxy+c{z}^{2}}{c}} \right ) \]

____________________________________________________________________________________

151.17 Problem 17

problem number 1213

Added April 14, 2019.

Problem Chapter 6.2.2.17, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ c x z w_x - c y z w_y +(b y^2-a x) w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  c*x*z*D[w[x, y,z], x] -c*y*z*D[w[x, y,z], y] +(b*y^2-a*x)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (x y,\frac {2 a x+b y^2+c z^2}{2 c}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde := c*x*z*diff(w(x,y,z),x)-c*y*z*diff(w(x,y,z),y)+(b*y^2-a*x)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( yx,{\frac {b{x}^{2}{y}^{2}+{z}^{2}c{x}^{2}+2\,a{x}^{3}}{c{x}^{2}}} \right ) \]

____________________________________________________________________________________

151.18 Problem 18

problem number 1214

Added April 14, 2019.

Problem Chapter 6.2.2.18, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ c x z w_x - c y z w_y +(a x^2+b y^2 ) w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  c*x*z*D[w[x, y,z], x] -c*y*z*D[w[x, y,z], y] +(a*x^2+b*y^2)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (x y,\frac {-a x^2+b y^2+c z^2}{2 c}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde := c*x*z*diff(w(x,y,z),x)-c*y*z*diff(w(x,y,z),y)+(a*x^2+b*y^2)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( yx,{\frac {-a{x}^{2}+b{y}^{2}+c{z}^{2}}{c}} \right ) \]

____________________________________________________________________________________

151.19 Problem 19

problem number 1215

Added April 14, 2019.

Problem Chapter 6.2.2.19, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x z w_x + y z w_y +(a x^2+a y^2+ b z^2 ) w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  x*z*D[w[x, y,z], x] +y*z*D[w[x, y,z], y] +(a*x^2+a*y^2+b*z^2)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {y}{x},\frac {x^{-2 b} \left (a \left (x^2+y^2\right )+(b-1) z^2\right )}{b-1}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde := x*z*diff(w(x,y,z),x)+y*z*diff(w(x,y,z),y)+(a*x^2+a*y^2+b*z^2)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {y}{x}},{\frac {{x}^{-2\,b} \left ( \left ( {x}^{2}+{y}^{2} \right ) a+{z}^{2} \left ( b-1 \right ) \right ) }{b-1}} \right ) \]

____________________________________________________________________________________

151.20 Problem 20

problem number 1216

Added April 14, 2019.

Problem Chapter 6.2.2.20, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ 2 c x z w_x + 2 c y z w_y +(c z^2-a x^2- b y^2 ) w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  2*c*x*z*D[w[x, y,z], x] +2*c*y*z*D[w[x, y,z], y] +(c*z^2-a*x^2-b*y^2)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {y}{x},\frac {a x^2+b y^2+c z^2}{c x}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde := 2*c*x*z*diff(w(x,y,z),x)+2*c*y*z*diff(w(x,y,z),y)+(c*z^2-a*x^2-b*y^2)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {y}{x}},{\frac {a{x}^{2}+b{y}^{2}+c{z}^{2}}{cx}} \right ) \]

____________________________________________________________________________________

151.21 Problem 21

problem number 1217

Added April 14, 2019.

Problem Chapter 6.2.2.21, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ b c y z w_x + a c x z w_y + a b x y w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  b*c*y*z*D[w[x, y,z], x] +a*c*x*z*D[w[x, y,z], y] +a*b*x*y*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {b y^2-a x^2}{2 b},\frac {c z^2-a x^2}{2 c}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde := b*c*y*z*diff(w(x,y,z),x)+a*c*x*z*diff(w(x,y,z),y)+a*b*x*y*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {-a{x}^{2}+b{y}^{2}}{b}},{\frac {-a{x}^{2}+c{z}^{2}}{c}} \right ) \]

____________________________________________________________________________________

151.22 Problem 22

problem number 1218

Added April 14, 2019.

Problem Chapter 6.2.2.22, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ b c (x^2-a^2) w_x + c(b x y+a c z ) w_y + b(c x z + a b y) w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  b*c*(x^2-a^2)*D[w[x, y,z], x] +c*(b*x*y+a*c*z)*D[w[x, y,z], y] +b*(c*x*z + a*b*y)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (-\frac {a c z+b x y}{a^2 b-b x^2},\frac {a (a b y+c x z)}{b \left (a^2-x^2\right )}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=  b*c*(x^2-a^2)*diff(w(x,y,z),x)+c*(b*x*y+a*c*z)*diff(w(x,y,z),y)+b*(c*x*z + a*b*y)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ \text { sol=() } \]

____________________________________________________________________________________

151.23 Problem 23

problem number 1219

Added April 14, 2019.

Problem Chapter 6.2.2.23, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ b x (b y +c) w_x + (b^2 y^2-a c x ) w_y + b^2 y z w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  b*x*(b*y+c)*D[w[x, y,z], x] + (b^2*y^2-a*c*x )*D[w[x, y,z], y] + b^2*y*z*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \text {Failed} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=  b*x*(b*y+c)*diff(w(x,y,z),x)+(b^2*y^2-a*c*x )*diff(w(x,y,z),y)+b^2*y*z*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {1}{3\,ax+3\,by} \left ( \left ( -ax-by \right ) \ln \left ( -9\,{\frac { \left ( ax+by \right ) \left ( ax-c \right ) }{x \left ( by+c \right ) }} \right ) + \left ( ax+by \right ) \ln \left ( {\frac {-9\,ax+9\,c}{2\,by+2\,c}} \right ) +by+c \right ) },z{{\rm e}^{-1/9\,\int ^{x}\!{\frac {1}{{\it \_a}\, \left ( {\it \_a}\,a-c \right ) } \left ( 2\,{{\rm e}^{\RootOf \left ( 2\,\ln \left ( -9\,{\frac { \left ( ax+by \right ) \left ( ax-c \right ) }{x \left ( by+c \right ) }} \right ) {{\rm e}^{{\it \_Z}}}ax+2\,\ln \left ( -9\,{\frac { \left ( ax+by \right ) \left ( ax-c \right ) }{x \left ( by+c \right ) }} \right ) {{\rm e}^{{\it \_Z}}}by-2\,{{\rm e}^{{\it \_Z}}}\ln \left ( {\frac { \left ( 2\,{{\rm e}^{{\it \_Z}}}-9 \right ) \left ( {\it \_a}\,a-c \right ) }{{\it \_a}}} \right ) ax-2\,{{\rm e}^{{\it \_Z}}}\ln \left ( {\frac { \left ( 2\,{{\rm e}^{{\it \_Z}}}-9 \right ) \left ( {\it \_a}\,a-c \right ) }{{\it \_a}}} \right ) by-2\,{{\rm e}^{{\it \_Z}}}\ln \left ( -9/2\,{\frac {ax-c}{by+c}} \right ) ax-2\,{{\rm e}^{{\it \_Z}}}\ln \left ( -9/2\,{\frac {ax-c}{by+c}} \right ) by+2\,{\it \_Z}\,{{\rm e}^{{\it \_Z}}}ax+2\,{{\rm e}^{{\it \_Z}}}{\it \_Z}\,by-9\,\ln \left ( -9\,{\frac { \left ( ax+by \right ) \left ( ax-c \right ) }{x \left ( by+c \right ) }} \right ) ax-9\,\ln \left ( -9\,{\frac { \left ( ax+by \right ) \left ( ax-c \right ) }{x \left ( by+c \right ) }} \right ) yb-2\,{{\rm e}^{{\it \_Z}}}by+9\,\ln \left ( {\frac { \left ( 2\,{{\rm e}^{{\it \_Z}}}-9 \right ) \left ( {\it \_a}\,a-c \right ) }{{\it \_a}}} \right ) ax+9\,\ln \left ( {\frac { \left ( 2\,{{\rm e}^{{\it \_Z}}}-9 \right ) \left ( {\it \_a}\,a-c \right ) }{{\it \_a}}} \right ) by+9\,\ln \left ( -9/2\,{\frac {ax-c}{by+c}} \right ) ax+9\,\ln \left ( -9/2\,{\frac {ax-c}{by+c}} \right ) by-9\,ax{\it \_Z}-9\,by{\it \_Z}-2\,c{{\rm e}^{{\it \_Z}}}-9\,ax+9\,c \right ) }}c+9\,{\it \_a}\,a-9\,c \right ) }{d{\it \_a}}}} \right ) \]

____________________________________________________________________________________

151.24 Problem 24

problem number 1220

Added April 14, 2019.

Problem Chapter 6.2.2.24, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x (b y -c z) w_x + y(c z-a x) w_y + z(a x - b y) w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  x*(b*y -c*z)*D[w[x, y,z], x] + y*(c*z-a*x)*D[w[x, y,z], y] + z*(a*x - b*y)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (-\frac {c x y z}{b},\frac {a x+b y+c z}{c}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=   x*(b*y -c*z)*diff(w(x,y,z),x)+ y*(c*z-a*x)*diff(w(x,y,z),y)+z*(a*x - b*y)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\frac {{x}^{{\it \_C2}}{{\rm e}^{{\it \_C2}}}{\it \_C5}\,{y}^{{\it \_C2}}{\it \_C4}\,{z}^{{\it \_C2}}}{{{\rm e}^{{\it \_C1}\,x}}{\it \_C3}} \left ( {{\rm e}^{{\frac {by{\it \_C1}}{a}}}} \right ) ^{-1} \left ( {{\rm e}^{{\frac {cz{\it \_C1}}{a}}}} \right ) ^{-1}} \]

____________________________________________________________________________________

151.25 Problem 25

problem number 1221

Added April 14, 2019.

Problem Chapter 6.2.2.25, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a(y+\beta )(z+\gamma ) w_x -b(x+\alpha )(z+\gamma ) w_y - c(x+\alpha )(y+\beta ) w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  a*(y+beta)*(z+gamma)*D[w[x, y,z], x] -b*(x+alpha)*(z+gamma)*D[w[x, y,z], y] - c*(x+alpha)*(y+beta)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {a y (2 \beta +y)+2 \alpha b x+b x^2}{2 a},\frac {a z (2 \gamma +z)+2 \alpha c x+c x^2}{2 a}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=   a*(y+beta)*(z+gamma)*diff(w(x,y,z),x)-b*(x+alpha)*(z+gamma)*diff(w(x,y,z),y)- c*(x+alpha)*(y+beta)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={{{\rm e}^{{\it \_C3}\,\alpha \,x}}{{\rm e}^{1/2\,{x}^{2}{\it \_C3}}}{{\rm e}^{{\it \_C1}\,\beta \,y}}{{\rm e}^{1/2\,{\it \_C1}\,{y}^{2}}}{\it \_C4}\,{\it \_C2}\,{\it \_C5}{{\rm e}^{{\frac {a\gamma \,{\it \_C3}\,z}{c}}}}{{\rm e}^{-1/2\,{\frac {{\it \_C1}\,b{z}^{2}}{c}}}}{{\rm e}^{1/2\,{\frac {a{\it \_C3}\,{z}^{2}}{c}}}} \left ( {{\rm e}^{{\frac {{\it \_C1}\,b\gamma \,z}{c}}}} \right ) ^{-1}} \]

____________________________________________________________________________________

151.26 Problem 26

problem number 1222

Added April 14, 2019.

Problem Chapter 6.2.2.26, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ b c (a c x z + b^2 y^2) w_x +a c (b c y z-2 a^2 x^2)w_y - a b (2 a b x y+c^2 z^2) w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  b*c*(a*c*x*z + b^2*y^2)*D[w[x, y,z], x] +a*c*(b*c*y*z-2*a^2*x^2)*D[w[x, y,z], y] - a*b*(2*a*b*x*y+c^2*z^2)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \text {Failed} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=   b*c*(a*c*x*z + b^2*y^2)*diff(w(x,y,z),x)+a*c*(b*c*y*z-2*a^2*x^2)*diff(w(x,y,z),y)- a*b*(2*a*b*x*y+c^2*z^2)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ \text { sol=() } \]

____________________________________________________________________________________

151.27 Problem 27

problem number 1223

Added April 14, 2019.

Problem Chapter 6.2.2.27, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a(y^2+z^2) w_x +x(b z-a y)w_y -x(b y + a z) w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde =  a*(y^2+z^2)*D[w[x, y,z], x] +x*(b*z-a*y)*D[w[x, y,z], y] -x*(b*y + a*z)*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \text {Failed} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=  a*(y^2+z^2)*diff(w(x,y,z),x)+x*(b*z-a*y)*diff(w(x,y,z),y)-x*(b*y + a*z)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={{\it \_C1}\,{{\rm e}^{1/2\,{\it \_c}_{{1}}{x}^{2}}}{\it \_F5} \left ( 1/2\,{\frac {1}{b} \left ( 2\,a\arctan \left ( {\frac {z}{y}} \right ) -b\ln \left ( {y}^{2}+{z}^{2} \right ) \right ) } \right ) \left ( {{\rm e}^{a{\it \_c}_{{1}}\int ^{y}\!{{\it \_a} \left ( \cos \left ( \RootOf \left ( -2\,a\arctan \left ( {\frac {z}{y}} \right ) -b\ln \left ( {\frac {{{\it \_a}}^{2}}{\cos \left ( 2\,{\it \_Z} \right ) +1}} \right ) -\ln \left ( 2 \right ) b+b\ln \left ( {y}^{2}+{z}^{2} \right ) +2\,{\it \_Z}\,a \right ) \right ) \right ) ^{-1} \left ( \sin \left ( \RootOf \left ( -2\,a\arctan \left ( {\frac {z}{y}} \right ) -b\ln \left ( {\frac {{{\it \_a}}^{2}}{\cos \left ( 2\,{\it \_Z} \right ) +1}} \right ) -\ln \left ( 2 \right ) b+b\ln \left ( {y}^{2}+{z}^{2} \right ) +2\,{\it \_Z}\,a \right ) \right ) b-a\cos \left ( \RootOf \left ( -2\,a\arctan \left ( {\frac {z}{y}} \right ) -b\ln \left ( {\frac {{{\it \_a}}^{2}}{\cos \left ( 2\,{\it \_Z} \right ) +1}} \right ) -\ln \left ( 2 \right ) b+b\ln \left ( {y}^{2}+{z}^{2} \right ) +2\,{\it \_Z}\,a \right ) \right ) \right ) ^{-1}}{d{\it \_a}}}} \right ) ^{-1}} \]

____________________________________________________________________________________

151.28 Problem 28

problem number 1224

Added April 14, 2019.

Problem Chapter 6.2.2.28, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ b(b y + c z)^2 w_x - a x(b y + 2 c z)w_y +a b x z w_z= 0 \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = b*(b*y + c*z)^2*D[w[x, y,z], x] - a*x*(b*y + 2*c*z)*D[w[x, y,z], y] +a*b*x*z*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {2 \left (a x^2+c^2 z^2\right )}{b},\log (z (b y+c z))\right )\right \},\left \{w(x,y,z)\to c_1\left (\frac {2 \left (a x^2+c^2 z^2\right )}{b},\log (z (c z-b y))\right )\right \},\left \{w(x,y,z)\to c_1\left (\frac {2 \left (a x^2+(b y-c z)^2\right )}{b},\log (z (c z-b y))\right )\right \},\left \{w(x,y,z)\to c_1\left (\frac {2 \left (a x^2+(b y+c z)^2\right )}{b},\log (z (b y+c z))\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
pde :=  b*(b*y + c*z)^2*diff(w(x,y,z),x)- a*x*(b*y + 2*c*z)*diff(w(x,y,z),y)+a*b*x*z*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ w \left ( x,y,z \right ) ={\it \_C1}\,{{\rm e}^{1/2\,{\it \_c}_{{1}}{x}^{2}}}{\it \_F5} \left ( {\frac {z \left ( by+cz \right ) }{b}} \right ) {{\rm e}^{1/2\,{\frac {{b}^{2}{\it \_c}_{{1}}{y}^{2}}{a}}}}{{\rm e}^{1/2\,{\frac {b{\it \_c}_{{1}}ycz}{a}}}} \]

____________________________________________________________________________________

151.29 Problem 29

problem number 1225

Added April 14, 2019.

Problem Chapter 6.2.2.29, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ (f_0 x - f_1) w_x + (f_0 y-f_2) w_y + (f_0 z -f_3) w_z= 0 \] Where \[ f_n = a_n + b_n x + c_n y+ d_n z \]

Mathematica

ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 f[n_]:= a[n] + b[n]*x + c[n]*y+ d[n]*z; 
 pde =(f[0]*x - f[1])*D[w[x, y,z], x] +(f[0]*y-f[2])*D[w[x, y,z], y] +(f[0]*z -f[3])*D[w[x,y,z],z]==0; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \text {Failed} \]

Maple

 
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); 
f:= n ->  a[n] + b[n]*x + c[n]*y+ d[n]*z; 
pde :=  (f(0)*x - f(1))*diff(w(x,y,z),x)+(f(0)*y-f(2))*diff(w(x,y,z),y)+(f(0)*z -f(3))*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); 
if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
 

\[ \text { sol=() } \]