____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y + c w_z= 0 \]
Mathematica ✓
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \left \{\left \{w(x,y,z)\to c_1\left (y-\frac {b x}{a},z-\frac {c x}{a}\right )\right \}\right \} \]
Maple ✓
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y) + c*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}},{\frac {za-cx}{a}} \right ) \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + a x w_y + b y w_z= 0 \]
Mathematica ✓
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = D[w[x, y,z], x] + a*x*D[w[x, y,z], y] +b*y*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \left \{\left \{w(x,y,z)\to c_1\left (y-\frac {a x^2}{2},\frac {1}{3} a b x^3-b x y+z\right )\right \}\right \} \]
Maple ✓
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := diff(w(x,y,z),x)+ a*x*diff(w(x,y,z),y) + b*y*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( -1/2\,a{x}^{2}+y,1/3\,x \left ( a{x}^{2}-3\,y \right ) b+z \right ) \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b y w_y + c z w_z= 0 \]
Mathematica ✓
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = a*D[w[x, y,z], x] + b*y*D[w[x, y,z], y] +c*z*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \left \{\left \{w(x,y,z)\to c_1\left (y e^{-\frac {b x}{a}},z e^{-\frac {c x}{a}}\right )\right \}\right \} \]
Maple ✓
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := a*diff(w(x,y,z),x)+ b*y*diff(w(x,y,z),y) + c*z*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( y{{\rm e}^{-{\frac {bx}{a}}}},z{{\rm e}^{-{\frac {cx}{a}}}} \right ) \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + a z w_y + b y w_z= 0 \]
Mathematica ✓
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = D[w[x, y,z], x] + a*z*D[w[x, y,z], y] +b*y*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {e^{-\sqrt {a} \sqrt {b} x} \left (\sqrt {b} y \left (e^{2 \sqrt {a} \sqrt {b} x}+1\right )-\sqrt {a} z \left (e^{2 \sqrt {a} \sqrt {b} x}-1\right )\right )}{2 \sqrt {b}},\frac {e^{-\sqrt {a} \sqrt {b} x} \left (\sqrt {a} z \left (e^{2 \sqrt {a} \sqrt {b} x}+1\right )-\sqrt {b} y \left (e^{2 \sqrt {a} \sqrt {b} x}-1\right )\right )}{2 \sqrt {a}}\right )\right \}\right \} \]
Maple ✓
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := diff(w(x,y,z),x)+ a*z*diff(w(x,y,z),y) + b*y*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {{z}^{2}a-b{y}^{2}}{a}},-{\frac {1}{\sqrt {ab}} \left ( -x\sqrt {ab}+\ln \left ( {\frac {aby+\sqrt {{a}^{2}{z}^{2}}\sqrt {ab}}{\sqrt {ab}}} \right ) \right ) } \right ) \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x w_x + a y w_y + b z w_z= 0 \]
Mathematica ✓
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = x*D[w[x, y,z], x] + a*y*D[w[x, y,z], y] +b*z*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \left \{\left \{w(x,y,z)\to c_1\left (y x^{-a},z x^{-b}\right )\right \}\right \} \]
Maple ✓
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := x*diff(w(x,y,z),x)+ a*y*diff(w(x,y,z),y) + b*z*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( y{x}^{-a},z{x}^{-b} \right ) \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x w_x + a z w_y + b y w_z= 0 \]
Mathematica ✓
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = x*D[w[x, y,z], x] + a*z*D[w[x, y,z], y] +b*y*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \left \{\left \{w(x,y,z)\to c_1\left (i y \sinh \left (\sqrt {a} \sqrt {b} \log (x)\right )-\frac {i \sqrt {a} z \cosh \left (\sqrt {a} \sqrt {b} \log (x)\right )}{\sqrt {b}},y \cosh \left (\sqrt {a} \sqrt {b} \log (x)\right )-\frac {\sqrt {a} z \sinh \left (\sqrt {a} \sqrt {b} \log (x)\right )}{\sqrt {b}}\right )\right \}\right \} \]
Maple ✓
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := x*diff(w(x,y,z),x)+ a*z*diff(w(x,y,z),y) + b*y*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {{z}^{2}a-b{y}^{2}}{a}},x \left ( \sqrt {ab}y+za \right ) ^{-{\frac {\sqrt {ab}}{ab}}} \right ) \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x w_x + (a x+b y) w_y + (\alpha x+\beta y+\gamma z) w_z= 0 \]
Mathematica ✓
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = x*D[w[x, y,z], x] + (a*x+b*y)*D[w[x, y,z], y] +(alpha*x+beta*y+gamma*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {x^{-b} (a x+(b-1) y)}{b-1},\frac {x^{-\gamma } (-a \beta x+\alpha x (b-\gamma )-(\gamma -1) (-b z+\beta y+\gamma z))}{(\gamma -1) (b-\gamma )}\right )\right \}\right \} \]
Maple ✓
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := x*diff(w(x,y,z),x)+ (a*x+b*y)*diff(w(x,y,z),y) + (alpha*x+beta*y+gamma*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac { \left ( y \left ( b-1 \right ) +ax \right ) {x}^{-b}}{b-1}},{\frac {- \left ( -\gamma +b \right ) \left ( a\beta -\alpha \,b+\alpha \right ) {x}^{1-\gamma }- \left ( z \left ( b-1 \right ) \gamma -{b}^{2}z+ \left ( \beta \,y+z \right ) b+\beta \, \left ( ax-y \right ) \right ) \left ( -1+\gamma \right ) {x}^{-\gamma }}{ \left ( -1+\gamma \right ) \left ( b-1 \right ) \left ( -\gamma +b \right ) }} \right ) \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a b x w_x + (a y+b z) ( b w_y -a w_z)= 0 \]
Mathematica ✗
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = a*b*x*D[w[x, y,z], x] + (a*y+b*z)*(b*D[w[x, y,z], y] -a*D[w[x,y,z],z])==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \text {Failed} \]
Maple ✓
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := a*b*x*diff(w(x,y,z),x)+ (a*y+b*z)*(b*diff(w(x,y,z),y) - a*diff(w(x,y,z),z))= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {ya+bz}{b}},x{{\rm e}^{-{\frac {ya}{ya+bz}}}} \right ) \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a b x w_x + b (a y+b z) w_y + a(a y-b z) w_z= 0 \]
Mathematica ✗
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = a*b*x*D[w[x, y,z], x] + b*(a*y+b*z)*D[w[x, y,z], y] +a*(a*y-b*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \text {Failed} \]
Maple ✓
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := a*b*x*diff(w(x,y,z),x)+ b*(a*y+b*z)*diff(w(x,y,z),y) + a*(a*y-b*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( -{\frac {1}{\sqrt {-{a}^{2}{y}^{2}+2\,abyz+{b}^{2}{z}^{2}}}},x \left ( {1 \left ( {\frac {\sqrt {2}{a}^{2}y}{-{a}^{2}{y}^{2}+2\,abyz+{b}^{2}{z}^{2}}}+ \left ( {\frac {ya}{\sqrt {-{a}^{2}{y}^{2}+2\,abyz+{b}^{2}{z}^{2}}}}+{\frac {bz}{\sqrt {-{a}^{2}{y}^{2}+2\,abyz+{b}^{2}{z}^{2}}}} \right ) \sqrt {{\frac {{a}^{2}}{-{a}^{2}{y}^{2}+2\,abyz+{b}^{2}{z}^{2}}}} \right ) {\frac {1}{\sqrt {{\frac {{a}^{2}}{-{a}^{2}{y}^{2}+2\,abyz+{b}^{2}{z}^{2}}}}}}} \right ) ^{-1/2\,{\frac {a\sqrt {2}}{\sqrt {-{a}^{2}{y}^{2}+2\,abyz+{b}^{2}{z}^{2}}}{\frac {1}{\sqrt {{\frac {{a}^{2}}{-{a}^{2}{y}^{2}+2\,abyz+{b}^{2}{z}^{2}}}}}}}} \right ) \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.10, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ b^2 c y w_x + a^2 c x w_y - a b(a x+b y) w_z= 0 \]
Mathematica ✓
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = b^2*c*y*D[w[x, y,z], x] + a^2*c*x*D[w[x, y,z], y] -a*b*(a*x+b*y)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {1}{2} \left (y^2-\frac {a^2 x^2}{b^2}\right ),\frac {a x+b y+c z}{c}\right )\right \}\right \} \]
Maple ✓
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := b^2*c*y*diff(w(x,y,z),x)+ a^2*c*x*diff(w(x,y,z),y) - a*b*(a*x+b*y)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {-{a}^{2}{x}^{2}+{y}^{2}{b}^{2}}{{b}^{2}}},{\frac {ax+by+cz}{c}} \right ) \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.11, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ c z w_x + (a x +b y) w_y +(a x+b y+c z) w_z= 0 \]
Mathematica ✗
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = c*z*D[w[x, y,z], x] + (a*x+b*y)*D[w[x, y,z], y] +(a*x+b*y+c*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \text {Failed} \]
Maple ✗
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := c*z*diff(w(x,y,z),x)+ (a*x+b*y)*diff(w(x,y,z),y) + (a*x+b*y+c*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ \text { sol=() } \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.12, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ b^2 c z w_x - a^2 c x w_y + a b^2 y w_z= 0 \]
Mathematica ✗
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = b^2*c*z*D[w[x, y,z], x] - a^2*c*x*D[w[x, y,z], y] +a*b^2*y*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \text {Failed} \]
Maple ✗
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := b^2*c*z*diff(w(x,y,z),x)-a^2*c*x*diff(w(x,y,z),y) + a*b^2*y*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ \text { sol=() } \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.13, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ (x+a) w_x + (y+b) x w_y + (z+c) w_z= 0 \]
Mathematica ✓
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = (x+a)*D[w[x, y,z], x] + (y+b)*D[w[x, y,z], y] +(z+c)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \left \{\left \{w(x,y,z)\to c_1\left (\frac {b+y}{a+x},\frac {c+z}{a+x}\right )\right \}\right \} \]
Maple ✓
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := (x+a)*diff(w(x,y,z),x)+(y+b)*diff(w(x,y,z),y) + (z+c)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {b+y}{x+a}},{\frac {z+c}{x+a}} \right ) \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.14, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ 2 b c(a x-b y) w_x -a c(a x-b y-c z)w_y - a b (a x -b y-3 c z) w_z= 0 \]
Mathematica ✗
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = 2*b*c*(a*x-b*y)*D[w[x, y,z], x] -a*c*(a*x-b*y-c*z)*D[w[x, y,z], y] - a*b*(a*x -b*y-3*c*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \text {\$Aborted} \]
Maple ✗
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := 2*b*c*(a*x-b*y)*diff(w(x,y,z),x)-a*c*(a*x-b*y-c*z)*diff(w(x,y,z),y)- a*b*(a*x -b*y-3*c*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ \text { sol=() } \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.15, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ b c(y-z) w_x +a c(z-x)w_y + a b (x -y) w_z= 0 \]
Mathematica ✗
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = b*c*(y-z)*D[w[x, y,z], x] +a*c*(z-x)*D[w[x, y,z], y] + a*b*(x -y)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \text {\$Aborted} \]
Maple ✓
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := b*c*(y-z)*diff(w(x,y,z),x)+a*c*(z-x)*diff(w(x,y,z),y)+ a*b*(x -y)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ w \left ( x,y,z \right ) ={{\rm e}^{1/2\,{\it \_C2}\,{x}^{2}}}{{\rm e}^{{\it \_C1}\,x}}{{\rm e}^{1/2\,{\frac {b{y}^{2}{\it \_C2}}{a}}}}{{\rm e}^{{\frac {by{\it \_C1}}{a}}}}{\it \_C3}\,{\it \_C5}\,{\it \_C4}\,{{\rm e}^{1/2\,{\frac {c{z}^{2}{\it \_C2}}{a}}}}{{\rm e}^{{\frac {cz{\it \_C1}}{a}}}} \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.16, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ b c(b y-2 c z) w_x +a c(3 c z-a x) w_y + a b (2 a x -3 b y) w_z= 0 \]
Mathematica ✗
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = b*c*(b*y-2*c*z)*D[w[x, y,z], x] +a*c*(3*c*z-a*x)*D[w[x, y,z], y] + a*b*(2*a*x -3*b*y)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \text {\$Aborted} \]
Maple ✓
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := b*c*(b*y-2*c*z)*diff(w(x,y,z),x)+a*c*(3*c*z-a*x)*diff(w(x,y,z),y)+ a*b*(2*a*x-3*b*y)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ w \left ( x,y,z \right ) ={{\rm e}^{1/2\,{\it \_C2}\,{x}^{2}}}{{\rm e}^{{\it \_C1}\,x}}{{\rm e}^{1/2\,{\frac {{b}^{2}{\it \_C2}\,{y}^{2}}{{a}^{2}}}}}{{\rm e}^{2/3\,{\frac {by{\it \_C1}}{a}}}}{\it \_C3}\,{\it \_C5}\,{\it \_C4}\,{{\rm e}^{1/2\,{\frac {{c}^{2}{\it \_C2}\,{z}^{2}}{{a}^{2}}}}}{{\rm e}^{1/3\,{\frac {cz{\it \_C1}}{a}}}} \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.17, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ 2 b c(b y-c z) w_x -a c(4 a x-3 b y-c z) w_y + 3 a b (4 a x-b y-3 c z) w_z= 0 \]
Mathematica ✗
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = 2*b*c*(b*y-c*z)*D[w[x, y,z], x] -a*c*(4*a*x-3*b*y-c*z)*D[w[x, y,z], y] + 3*a*b*(4*a*x-b*y-3*c*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \text {\$Aborted} \]
Maple ✗
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := 2*b*c*(b*y-c*z)*diff(w(x,y,z),x)-a*c*(4*a*x-3*b*y-c*z)*diff(w(x,y,z),y)+ 3*a*b*(4*a*x-b*y-3*c*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ \text { sol=() } \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.18, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ (a x+y-z) w_x -(x+a y-z) w_y + (a-1) (y-x) w_z= 0 \]
Mathematica ✗
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = (a*x+y-z)*D[w[x, y,z], x] -(x+a*y-z)*D[w[x, y,z], y] + (a-1)*(y-x)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \text {\$Aborted} \]
Maple ✗
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := (a*x+y-z)*diff(w(x,y,z),x)-(x+a*y-z)*diff(w(x,y,z),y)+ (a-1)*(y-x)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ \text { sol=() } \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.19, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ 2 b c (3 a x-2 b y+c z) w_x -2 a c(2 a x-5 b y+3 c z) w_y + a b(2 a x-6 b y+11 c z) w_z= 0 \]
Mathematica ✗
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = 2*b*c*(3*a*x-2*b*y+c*z)*D[w[x, y,z], x] -2*a*c(2*a*x-5*b*y+3*c*z)*D[w[x, y,z], y] + a*b(2*a*x-6*b*y+11*c*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \text {Failed} \]
Maple ✗
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := 2*b*c*(3*a*x-2*b*y+c*z)*diff(w(x,y,z),x)-2*a*c*(2*a*x-5*b*y+3*c*z)*diff(w(x,y,z),y)+ a*b*(2*a*x-6*b*y+11*c*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ \text { sol=() } \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.20, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ (A x+c y+b z) w_x +(c x+ B y+a z) w_y + (b x + a y + C z) w_z= 0 \]
Mathematica ✗
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = (A*x+c*y+b*z)*D[w[x, y,z], x] +(c*x+B*y+a*z)*D[w[x, y,z], y] +(b*x+a*y+C1*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \text {Failed} \]
Maple ✗
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := (A*x+c*y+b*z)*diff(w(x,y,z),x)+(c*x+B*y+a*z)*diff(w(x,y,z),y)+ (b*x+a*y+C1*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ \text { sol=() } \]
____________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.21, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ (a_1 x+b_1 y+c_1 z+d_1) w_x +(a_2 x+b_2 y+c_2 z+d_2) w_y + (a_3 x+b_3 y+c_3 z+d_3) w_z= 0 \]
Mathematica ✗
ClearAll[w, x, y, z, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t,F,C1]; ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; pde = (a1*x+b1*y+c1*z+d1)*D[w[x, y,z], x] +(a2*x+b2*y+c2*z+d2)*D[w[x, y,z], y] +(a3*x+b3*y+c3*z+d3)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]]; sol = Simplify[sol];
\[ \text {Failed} \]
Maple ✗
unassign('w,x,y,z,a,b,n,m,c,k,alpha,beta,g,A,C1,f,C,lambda,B,mu,d,s,t'); unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2,nu'); pde := (a1*x+b1*y+c1*z+d1)*diff(w(x,y,z),x)+(a2*x+b2*y+c2*z+d2)*diff(w(x,y,z),y)+ (a3*x+b3*y+c3*z+d3)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime')); if(not evalb(sol=())) then sol:=simplify(sol,size); fi;
\[ \text { sol=() } \]