114 HFOPDE, chapter 4.6.3

114.1 Problem 1
114.2 Problem 2
114.3 Problem 3
114.4 Problem 4
114.5 Problem 5

____________________________________________________________________________________

114.1 Problem 1

problem number 933

Added March 9, 2019.

Problem Chapter 4.6.3.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c \tan (\lambda x+\mu y) w \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Tan[lambda*x + mu*y]*w[x, y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {a y-b x}{a}\right ) \cos ^{-\frac {c}{a \lambda +b \mu }}\left (\frac {x (a \lambda +b \mu )}{a}+\frac {\mu (a y-b x)}{a}\right )\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; 
k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; 
v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; 
h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*tan(lambda*x+mu*y)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) \left ( 1+ \left ( \tan \left ( {\frac { \left ( ya-bx \right ) \mu +ax\lambda +b\mu \,x}{a}} \right ) \right ) ^{2} \right ) ^{1/2\,{\frac {c}{a\lambda +b\mu }}} \]

____________________________________________________________________________________

114.2 Problem 2

problem number 934

Added March 9, 2019.

Problem Chapter 4.6.3.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = (c \tan (\lambda x)+ k \tan (\mu y) ) w \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (c*Tan[lambda*x] + k*Tan[mu*y])*w[x, y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) \cos ^{-\frac {c}{a \lambda }}(\lambda x) \cos ^{-\frac {k}{b \mu }}(\mu y)\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; 
k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; 
v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; 
h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) = (c*tan(lambda*x)+k*tan(mu*y))*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) \left ( 1+ \left ( \tan \left ( \lambda \,x \right ) \right ) ^{2} \right ) ^{1/2\,{\frac {c}{a\lambda }}} \left ( 1+ \left ( \tan \left ( \mu \,y \right ) \right ) ^{2} \right ) ^{1/2\,{\frac {k}{b\mu }}} \]

____________________________________________________________________________________

114.3 Problem 3

problem number 935

Added March 9, 2019.

Problem Chapter 4.6.3.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + y w_y = a x \tan (\lambda x+ \mu y) w \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2]; 
 pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*Tan[lambda*x + mu*y]*w[x, y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y)\to c_1\left (\frac {y}{x}\right ) \cos ^{-\frac {a x}{\lambda x+\mu y}}(\lambda x+\mu y)\right \}\right \} \]

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; 
k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; 
v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; 
h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; 
pde :=  x*diff(w(x,y),x)+ y*diff(w(x,y),y) = a*x*tan(lambda*x+mu*y)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {y}{x}} \right ) \left ( 1+ \left ( \tan \left ( \lambda \,x+\mu \,y \right ) \right ) ^{2} \right ) ^{1/2\,{a \left ( {\frac {\mu \,y}{x}}+\lambda \right ) ^{-1}}} \]

____________________________________________________________________________________

114.4 Problem 4

problem number 936

Added March 9, 2019.

Problem Chapter 4.6.3.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \tan ^n(\lambda x) w_y = (c \tan ^m(\mu x)+s \tan ^k(\beta y)) w \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2]; 
 pde = a*D[w[x, y], x] + b*Tan[lambda*x]^n*D[w[x, y], y] == (c*Tan[mu*x]^m + s*Tan[beta*y]^k)*w[x, y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; 
k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; 
v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; 
h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; 
pde :=  a*diff(w(x,y),x)+ b*tan(lambda*x)^n*diff(w(x,y),y) = (c*tan(mu*x)^m+s*tan(beta*y)^k)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!{\frac {b \left ( \tan \left ( \lambda \,x \right ) \right ) ^{n}}{a}}\,{\rm d}x+y \right ) {{\rm e}^{\int ^{x}\!{\frac {1}{a} \left ( c \left ( \tan \left ( {\it \_b}\,\mu \right ) \right ) ^{m}+s \left ( \tan \left ( \beta \,\int \!{\frac {b \left ( \tan \left ( {\it \_b}\,\lambda \right ) \right ) ^{n}}{a}}\,{\rm d}{\it \_b}+ \left ( -\int \!{\frac {b \left ( \tan \left ( \lambda \,x \right ) \right ) ^{n}}{a}}\,{\rm d}x+y \right ) \beta \right ) \right ) ^{k} \right ) }{d{\it \_b}}}} \]

____________________________________________________________________________________

114.5 Problem 5

problem number 937

Added March 9, 2019.

Problem Chapter 4.6.3.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \tan ^n(\lambda y) w_y = (c \tan ^m(\mu x)+s \tan ^k(\beta y)) w \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2]; 
 pde = a*D[w[x, y], x] + b*Tan[lambda*y]^n*D[w[x, y], y] == (c*Tan[mu*x]^m + s*Tan[beta*y]^k)*w[x, y]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[ \text {\$Aborted} \] Timed out

Maple

 
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; 
k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; 
C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; 
v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; 
h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; 
pde :=  a*diff(w(x,y),x)+ b*tan(lambda*y)^n*diff(w(x,y),y) = (c*tan(mu*x)^m+s*tan(beta*y)^k)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[ w \left ( x,y \right ) ={\it \_F1} \left ( -{\frac {a\int \! \left ( \tan \left ( y\lambda \right ) \right ) ^{-n}\,{\rm d}y}{b}}+x \right ) {{\rm e}^{\int ^{y}\!{\frac { \left ( \tan \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}}{b} \left ( c \left ( -\tan \left ( -\mu \,\int \!{\frac { \left ( \tan \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}a}{b}}\,{\rm d}{\it \_b}-\mu \, \left ( -{\frac {a\int \! \left ( \tan \left ( y\lambda \right ) \right ) ^{-n}\,{\rm d}y}{b}}+x \right ) \right ) \right ) ^{m}+s \left ( \tan \left ( \beta \,{\it \_b} \right ) \right ) ^{k} \right ) }{d{\it \_b}}}} \]