____________________________________________________________________________________
Added March 9, 2019.
Problem Chapter 4.6.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = c \cos (\lambda x+\mu y) w \]
Mathematica ✓
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Cos[lambda*x + mu*y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \left \{\left \{w(x,y)\to c_1\left (\frac {a y-b x}{a}\right ) \exp \left (\frac {c \sin \left (\mu \left (\frac {a y-b x}{a}+\frac {b x}{a}\right )+\lambda x\right )}{a \lambda +b \mu }\right )\right \}\right \} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*cos(lambda*x+mu*y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) {{\rm e}^{{\frac {c}{a\lambda +b\mu }\sin \left ( {\frac { \left ( ya-bx \right ) \mu +ax\lambda +b\mu \,x}{a}} \right ) }}} \]
____________________________________________________________________________________
Added March 9, 2019.
Problem Chapter 4.6.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = (c \cos (\lambda x)+ k \cos (\mu y) ) w \]
Mathematica ✓
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (c*Cos[lambda*x] + k*Cos[mu*y])*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; sol = Simplify[sol];
\[ \left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) e^{\frac {c \sin (\lambda x)}{a \lambda }+\frac {k \sin (\mu y)}{b \mu }}\right \}\right \} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := a*diff(w(x,y),x)+ b*diff(w(x,y),y) = (c*cos(lambda*x)+k*cos(mu*y))*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) {{\rm e}^{{\frac {c\sin \left ( \lambda \,x \right ) b\mu +k\sin \left ( \mu \,y \right ) a\lambda }{a\lambda \,b\mu }}}} \]
____________________________________________________________________________________
Added March 9, 2019.
Problem Chapter 4.6.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x w_x + y w_y = a x \cos (\lambda x+ \mu y) w \]
Mathematica ✓
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*Cos[lambda*x + mu*y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; sol = Simplify[sol];
\[ \left \{\left \{w(x,y)\to c_1\left (\frac {y}{x}\right ) e^{\frac {a x \sin (\lambda x+\mu y)}{\lambda x+\mu y}}\right \}\right \} \]
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := x*diff(w(x,y),x)+ y*diff(w(x,y),y) = a*x*cos(lambda*x+mu*y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {y}{x}} \right ) {{\rm e}^{{a\sin \left ( \lambda \,x+\mu \,y \right ) \left ( {\frac {\mu \,y}{x}}+\lambda \right ) ^{-1}}}} \]
____________________________________________________________________________________
Added March 9, 2019.
Problem Chapter 4.6.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \cos ^n(\lambda x) w_y = (c \cos ^m(\mu x)+s \cos ^k(\beta y)) w \]
Mathematica ✗
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = a*D[w[x, y], x] + b*Cos[lambda*x]^n*D[w[x, y], y] == (c*Cos[mu*x]^m + s*Cos[beta*y]^k)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \text {\$Aborted} \] Timed out
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := a*diff(w(x,y),x)+ b*cos(lambda*x)^n*diff(w(x,y),y) = (c*cos(mu*x)^m+s*cos(beta*y)^k)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[ w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!{\frac {b \left ( \cos \left ( \lambda \,x \right ) \right ) ^{n}}{a}}\,{\rm d}x+y \right ) {{\rm e}^{\int ^{x}\!{\frac {1}{a} \left ( c \left ( \cos \left ( {\it \_b}\,\mu \right ) \right ) ^{m}+s \left ( \cos \left ( \beta \,\int \!{\frac {b \left ( \cos \left ( {\it \_b}\,\lambda \right ) \right ) ^{n}}{a}}\,{\rm d}{\it \_b}+ \left ( -\int \!{\frac {b \left ( \cos \left ( \lambda \,x \right ) \right ) ^{n}}{a}}\,{\rm d}x+y \right ) \beta \right ) \right ) ^{k} \right ) }{d{\it \_b}}}} \]
____________________________________________________________________________________
Added March 9, 2019.
Problem Chapter 4.6.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \cos ^n(\lambda y) w_y = (c \cos ^m(\mu x)+s \cos ^k(\beta y)) w \]
Mathematica ✗
ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; ClearAll[g1, g0, h2, h1, h0, f1, f2]; pde = a*D[w[x, y], x] + b*Cos[lambda*y]^n*D[w[x, y], y] == (c*Cos[mu*x]^m + s*Cos[beta*y]^k)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[ \text {\$Aborted} \] Timed out
Maple ✓
w:='w';x:='x';y:='y';a:='a';b:='b';n:='n';m:='m';c:='c'; k:='k';alpha:='alpha';beta:='beta';g:='g';A:='A';f:='f'; C:='C';lambda:='lambda';B:='B';mu:='mu';d:='d';s:='s';t:='t'; v:='v';q:='q';p:='p';l:='l';g1:='g1';g2:='g2';g0:='g0'; h0:='h0';h1:='h1';h2:='h2';f2:='f2';f3:='f3'; pde := a*diff(w(x,y),x)+ b*cos(lambda*y)^n*diff(w(x,y),y) = (c*cos(mu*x)^m+s*cos(beta*y)^k)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[ w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {bx-a\int \! \left ( \cos \left ( y\lambda \right ) \right ) ^{-n}\,{\rm d}y}{b}} \right ) {{\rm e}^{\int ^{y}\!{\frac { \left ( \cos \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}}{b} \left ( c \left ( \cos \left ( -\mu \,\int \!{\frac { \left ( \cos \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}a}{b}}\,{\rm d}{\it \_b}-{\frac {\mu \, \left ( bx-a\int \! \left ( \cos \left ( y\lambda \right ) \right ) ^{-n}\,{\rm d}y \right ) }{b}} \right ) \right ) ^{m}+s \left ( \cos \left ( \beta \,{\it \_b} \right ) \right ) ^{k} \right ) }{d{\it \_b}}}} \]