4.18 Numerically integrate f(x) on the real line

Problem: Integrate

\[ \int _{-2}^{2}\frac {1}{5}\left ( \frac {1}{100}\left ( 322+3x\left ( 98+x\left ( 37+x\right ) \right ) \right ) -24\frac {x}{1+x^{2}}\right ) dx \]

The exact answer is \(94/25=3.76\)

Mathematica

f[x_] := (1/5)(1/100(322+3*x(98+x(37+x)))- 
           24(x/(1+x^2))) 
r = Integrate[f[x],{x,-2,2}]
 

Out[15]= 94/25
 

N[r]
 

Out[17]= 3.76
 

To compare with Matlab, replace \(1\) by \(1.0\) in the expression (or use N)

f[x_]:=(1.0/5)(1/100(322+3*x(98+x(37+x)))- 
         24(x/(1+x^2))) 
r = Integrate[f[x],{x,-2,2}]; 
InputForm[r]
 

Out[62]=  3.7600000000000007
 

 

Matlab

clear all; 
format long 
f=@(x)(1/5)*(1/100*(322+3*x.*(98+x.*(37+x)))... 
         -24*(x/(1+x.^2))); 
integral(f,-2,2)
 

ans = 
   3.760000000000001
 

integral(f,-2,2,'AbsTol',1e-6,'RelTol',1e-6)
 

ans = 
   3.760000000000001