Plot the CTFT \(X(\omega )\) of \(x(t)=3 \sin (t)\). By deļ¬nition \begin {align*} X(\omega ) &= \int _{t=-\infty }^{\infty } x(t) e^{-i\omega t} \mathop {dt} \end {align*}
Mathematica
Clear["Global`*"]; f = 3*Sin[t]; y = FourierTransform[f,t,w,FourierParameters->{1, -1}]
Out[138]= -3 I Pi DiracDelta[-1+w]+3 I Pi DiracDelta[1+w]
tab = Table[{k,y/.w->k},{k,-3,3}] tab = tab/.DiracDelta[0]->1 tab[[All,2]]=Map[Sign[Im[#]]Abs[#]&,tab[[All,2]]] ListPlot[tab,PlotStyle->AbsolutePointSize[5], AxesLabel->{"frequency \[CapitalOmega] rad/sec", "|F(\[CapitalOmega]|"}, PlotRange->{All,{-12,12}}, Filling->Axis, FillingStyle->{{Thick,Red}}]
Matlab
syms t; F=fourier(3*sin(t))
F = -pi*(dirac(w-1)-dirac(w+1))*3*i
Need to do the plot.
Maple
restart; transform := expand(inttrans:-fourier(3*sin(t), t, w))
gives
transform := 3*I*Pi*Dirac(w + 1) - 3*I*Pi*Dirac(w - 1)