Obtain Fourier Series approximation of \(f(x)=e^{-|x|}\) for \(-1<x<1\)
restart; f:=x->exp(-abs(x)); f_approx:=OrthogonalExpansions:-FourierSeries(f(x),x=-1..1,infinity ): f_approx:=subs(i=n,f_approx);
Mathematica does not have a buildin function to give general series expression as the above with Maple. There is a user written package and answer here https://mathematica.stackexchange.com/questions/149468/a-more-convenient-fourier-series which provides this.
In Mathematica it is possible to obtain the terms using the command FourierSeries
. For example the terms \(n=0,n=-1,n=1\) can be obtained using
expr = Exp[-Abs[x]]; FourierSeries[expr, x, 1, FourierParameters -> {1, Pi}]
see https://reference.wolfram.com/language/ref/FourierSeries.html for deļ¬nitions of FourierParameters
used above.
Obtain Fourier Series approximation of
For \(0<x<L\)
restart; f:=x->piecewise(0<x and x<L/2,2*x*h/L, L/2<x and x<L, 2*h*(L-x)/L); f_approx:=OrthogonalExpansions:-FourierSeries(f(x),x=0..L,infinity ): f_approx:=subs(i=n,f_approx): simplify(%) assuming L>0
Obtain Fourier Series approximation of \(\cosh x\) for \(-1<x<1\).
restart; f:=x->cosh(x); f_approx:=OrthogonalExpansions:-FourierSeries(f(x),x=-1..1,infinity ): f_approx:=subs(i=n,f_approx); convert(%,trig);