\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac { \left ( x \left ( y \left ( x \right ) \right ) ^{2}+1 \right ) ^{2}}{y \left ( x \right ) {x}^{4}}}=0} \]
Mathematica: cpu = 0.426054 (sec), leaf count = 192 \[ \left \{\left \{y(x)\to -\frac {\sqrt {\sqrt {2} e^{\frac {2 \sqrt {2} \left (c_1 x+1\right )}{x}}-\frac {2 e^{\frac {2 \sqrt {2} \left (c_1 x+1\right )}{x}}}{x}-\frac {2}{x}-\sqrt {2}}}{\sqrt {2 e^{\frac {2 \sqrt {2} \left (c_1 x+1\right )}{x}}+2}}\right \},\left \{y(x)\to \frac {\sqrt {\sqrt {2} e^{\frac {2 \sqrt {2} \left (c_1 x+1\right )}{x}}-\frac {2 e^{\frac {2 \sqrt {2} \left (c_1 x+1\right )}{x}}}{x}-\frac {2}{x}-\sqrt {2}}}{\sqrt {2 e^{\frac {2 \sqrt {2} \left (c_1 x+1\right )}{x}}+2}}\right \}\right \} \]
Maple: cpu = 0.156 (sec), leaf count = 237 \[ \left \{ y \left ( x \right ) =-{\frac {\sqrt {2}}{2\,x}\sqrt {- \left ( {\it \_C1}\,{{\rm e}^{{\frac {-1-\sqrt {2}x}{{x}^{2}}}}}+{{\rm e}^{{ \frac {-1+\sqrt {2}x}{{x}^{2}}}}} \right ) \left ( {\it \_C1}\, \left ( \sqrt {2}x+2 \right ) {{\rm e}^{{\frac {-1-\sqrt {2}x}{{x}^{2}}}}}+ \left ( 2-\sqrt {2}x \right ) {{\rm e}^{{\frac {-1+\sqrt {2}x}{{x}^{2}} }}} \right ) x} \left ( {\it \_C1}\,{{\rm e}^{{\frac {-1-\sqrt {2}x}{{x} ^{2}}}}}+{{\rm e}^{{\frac {-1+\sqrt {2}x}{{x}^{2}}}}} \right ) ^{-1}},y \left ( x \right ) ={\frac {\sqrt {2}}{2\,x}\sqrt {- \left ( {\it \_C1} \,{{\rm e}^{{\frac {-1-\sqrt {2}x}{{x}^{2}}}}}+{{\rm e}^{{\frac {-1+ \sqrt {2}x}{{x}^{2}}}}} \right ) \left ( {\it \_C1}\, \left ( \sqrt {2}x +2 \right ) {{\rm e}^{{\frac {-1-\sqrt {2}x}{{x}^{2}}}}}+ \left ( 2- \sqrt {2}x \right ) {{\rm e}^{{\frac {-1+\sqrt {2}x}{{x}^{2}}}}} \right ) x} \left ( {\it \_C1}\,{{\rm e}^{{\frac {-1-\sqrt {2}x}{{x}^{2 }}}}}+{{\rm e}^{{\frac {-1+\sqrt {2}x}{{x}^{2}}}}} \right ) ^{-1}} \right \} \]