\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) =i/2x \left ( i-2\,\sqrt {-{x}^{2}+4\,\ln \left ( a \right ) +4\,\ln \left ( y \left ( x \right ) \right ) } \right ) y \left ( x \right ) =0} \]
Mathematica: cpu = 0.370047 (sec), leaf count = 99 \[ \text {Solve}\left [-\log (y(x))+\frac {1}{4} \left (-\frac {1}{2} \log \left (4 \log (a)-x^2+4 \log (y(x))+1\right )+i \sqrt {4 \log (a)-x^2+4 \log (y(x))}-i \tan ^{-1}\left (\sqrt {4 \log (a)-x^2+4 \log (y(x))}\right )+4 \log (a)-x^2+4 \log (y(x))\right )=c_1,y(x)\right ] \]
Maple: cpu = 0.250 (sec), leaf count = 70 \[ \left \{ {\frac {1}{2}\sqrt {-{x}^{2}+4\,\ln \left ( a \right ) +4\, \ln \left ( y \left ( x \right ) \right ) }}-{\frac {1}{2}\arctan \left ( \sqrt {-{x}^{2}+4\,\ln \left ( a \right ) +4\,\ln \left ( y \left ( x \right ) \right ) } \right ) }+{\frac {i}{4}}\ln \left ( {x}^{ 2}-4\,\ln \left ( a \right ) -4\,\ln \left ( y \left ( x \right ) \right ) -1 \right ) +{\frac {i}{2}}{x}^{2}-{\it \_C1}=0 \right \} \]