\[ x^2 y''(x)+(x+3) x y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.0146054 (sec), leaf count = 80
DSolve[-y[x] + x*(3 + x)*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to c_1 \operatorname {HypergeometricU}\left (2+\sqrt {2},1+2 \sqrt {2},x\right ) e^{\left (\sqrt {2}-1\right ) \log (x)-x}+c_2 L_{-2-\sqrt {2}}^{2 \sqrt {2}}(x) e^{\left (\sqrt {2}-1\right ) \log (x)-x}\right \}\right \}\] ✓ Maple : cpu = 0.111 (sec), leaf count = 93
dsolve(x^2*diff(diff(y(x),x),x)+(x+3)*x*diff(y(x),x)-y(x)=0,y(x))
\[y \left (x \right ) = -\frac {{\mathrm e}^{-\frac {x}{2}} \left (-c_{1} \left (\sqrt {2}+x +1\right ) \operatorname {BesselI}\left (-\frac {1}{2}+\sqrt {2}, \frac {x}{2}\right )-c_{1} \left (-\sqrt {2}+x +1\right ) \operatorname {BesselI}\left (\frac {1}{2}+\sqrt {2}, \frac {x}{2}\right )+c_{2} \left (\left (-\sqrt {2}-x -1\right ) \operatorname {BesselK}\left (-\frac {1}{2}+\sqrt {2}, \frac {x}{2}\right )+\operatorname {BesselK}\left (\frac {1}{2}+\sqrt {2}, \frac {x}{2}\right ) \left (-\sqrt {2}+x +1\right )\right )\right )}{\sqrt {x}}\]