\[ x^2 y''(x)+(x+1) x y'(x)+(3 x-1) y(x)=0 \] ✓ Mathematica : cpu = 0.066899 (sec), leaf count = 65
DSolve[(-1 + 3*x)*y[x] + x*(1 + x)*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to c_1 e^{-x} (x-3) x-\frac {c_2 e^{-x} \left (x^3 (-\operatorname {ExpIntegralEi}(x))+3 x^2 \operatorname {ExpIntegralEi}(x)+e^x x^2-2 e^x x-e^x\right )}{6 x}\right \}\right \}\] ✓ Maple : cpu = 0.038 (sec), leaf count = 48
dsolve(x^2*diff(diff(y(x),x),x)+x*(1+x)*diff(y(x),x)+(3*x-1)*y(x)=0,y(x))
\[y \left (x \right ) = \frac {x^{2} c_{2} {\mathrm e}^{-x} \left (x -3\right ) \operatorname {expIntegral}_{1}\left (-x \right )+x^{2} c_{1} \left (x -3\right ) {\mathrm e}^{-x}+c_{2} \left (x^{2}-2 x -1\right )}{x}\]