\[ y'(x)=-\frac {x \left (64 x^9-288 x^8 y(x)-96 x^8+432 x^7 y(x)^2+288 x^7 y(x)-144 x^7-216 x^6 y(x)^3-216 x^6 y(x)^2-288 x^6 y(x)-456 x^6+864 x^5 y(x)^2+1008 x^5 y(x)-576 x^5-648 x^4 y(x)^3-972 x^4 y(x)^2-216 x^4 y(x)-864 x^4+432 x^3 y(x)^2+720 x^3 y(x)-756 x^3-648 x^2 y(x)^3-1296 x^2 y(x)^2-594 x^2 y(x)-1134 x^2-216 y(x)^3-540 y(x)^2-378 y(x)-432 x-513\right )}{216 \left (x^2+1\right )^4} \] ✓ Mathematica : cpu = 0.585163 (sec), leaf count = 151
\[\text {Solve}\left [-\frac {29}{3} \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {\frac {3 x y(x)}{x^2+1}+\frac {-4 x^4+2 x^3+5 x}{2 \left (x^2+1\right )^2}}{\sqrt [3]{29} \sqrt [3]{\frac {x^3}{\left (x^2+1\right )^3}}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]=\frac {29^{2/3} \left (\frac {x^3}{\left (x^2+1\right )^3}\right )^{2/3} \left (x^2+1\right )^2 \log \left (x^2+1\right )}{18 x^2}+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.092 (sec), leaf count = 91
\[\left \{y \left (x \right ) = \frac {12 x^{3}+58 x^{2} \RootOf \left (6 c_{1}-162 \left (\int _{}^{\textit {\_Z}}\frac {1}{841 \textit {\_a}^{3}-27 \textit {\_a} +27}d \textit {\_a} \right )+\ln \left (x^{2}+1\right )\right )-6 x^{2}+58 \RootOf \left (6 c_{1}-162 \left (\int _{}^{\textit {\_Z}}\frac {1}{841 \textit {\_a}^{3}-27 \textit {\_a} +27}d \textit {\_a} \right )+\ln \left (x^{2}+1\right )\right )-15}{18 x^{2}+18}\right \}\]