\[ y'(x)=-\frac {1296 y(x)}{216 x^3-216 x^2 y(x)^4-324 x^2 y(x)^3-648 x^2 y(x)^2-648 x^2 y(x)+216 x^2-8 y(x)^{12}-36 y(x)^{11}-126 y(x)^{10}-315 y(x)^9+72 x y(x)^8-570 y(x)^8+216 x y(x)^7-846 y(x)^7+594 x y(x)^6-882 y(x)^6+1080 x y(x)^5-612 y(x)^5+1152 x y(x)^4-1944 y(x)^4+1080 x y(x)^3-1728 y(x)^3+216 x y(x)^2-2376 y(x)^2-432 x y(x)-1296 y(x)+216} \] ✓ Mathematica : cpu = 0.817517 (sec), leaf count = 292
\[\text {Solve}\left [72 \text {RootSum}\left [-216 \text {$\#$1}^3+216 \text {$\#$1}^2 y(x)^4+324 \text {$\#$1}^2 y(x)^3+648 \text {$\#$1}^2 y(x)^2+648 \text {$\#$1}^2 y(x)-216 \text {$\#$1}^2-72 \text {$\#$1} y(x)^8-216 \text {$\#$1} y(x)^7-594 \text {$\#$1} y(x)^6-1080 \text {$\#$1} y(x)^5-1152 \text {$\#$1} y(x)^4-1080 \text {$\#$1} y(x)^3-216 \text {$\#$1} y(x)^2+432 \text {$\#$1} y(x)+8 y(x)^{12}+36 y(x)^{11}+126 y(x)^{10}+315 y(x)^9+570 y(x)^8+846 y(x)^7+882 y(x)^6+612 y(x)^5+216 y(x)^4-216 y(x)^3-216 y(x)^2-216\& ,\frac {\log (x-\text {$\#$1})}{36 \text {$\#$1}^2-24 \text {$\#$1} y(x)^4-36 \text {$\#$1} y(x)^3-72 \text {$\#$1} y(x)^2-72 \text {$\#$1} y(x)+24 \text {$\#$1}+4 y(x)^8+12 y(x)^7+33 y(x)^6+60 y(x)^5+64 y(x)^4+60 y(x)^3+12 y(x)^2-24 y(x)}\& \right ]+\log (y(x))=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.625 (sec), leaf count = 50
\[\left \{y \left (x \right ) = {\mathrm e}^{\RootOf \left (c_{1}-\textit {\_Z} -6 \left (\int _{}^{x -{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}}-\frac {{\mathrm e}^{3 \textit {\_Z}}}{2}-\frac {{\mathrm e}^{4 \textit {\_Z}}}{3}}\frac {1}{\textit {\_a}^{3}+\textit {\_a}^{2}+1}d \textit {\_a} \right )\right )}\right \}\]