5.3.2.12 Example 12
(y)2=e4x2y(y1)ln(y)2=(4x2y)+ln(y1)4x2y=ln(y)2ln(y1)4x2y=ln(y)2y12y=4xln(y)2y1y=2x12ln((y)2y1)=2x12ln(p2p1)=xf+g

Where f=2,g=12ln(p2p1).  Since f(p)p then this is d’Almbert ode. Taking derivative w.r.t. x gives

p=(f+xfdpdx)+(gdpdx)p=f+(xf+g)dpdxpf=(xf+g)dpdx

Using values for f,g the above simplifies to

(2A)p2=(2p2p22p)dpdx

The singular solution is when dpdx=0 which gives p=2. From (1) this gives

y=2x12ln4

The general solution is when dpdx0. Then (2) becomes

dpdx=(p2)(2p22p2p)=2p(1p)

is now separable. Solving for p gives

p=11+ce2x

Substituting the above solutions of p in (1) gives

y=2x12ln((11+ce2x)211+ce2x1)=2x12ln(e4xc(c+e2x))