ode internal name "second order airy"
Sometimes this is written as \(y^{\prime \prime }\pm k^{2}xy=0\). But it is the same ode. The power on \(k\) is not important. So in this below will show for generic \(k^{n}\).
This table gives the patterns to use for solving Airy ode. This result uses this general form of Airy ode
Hence in this table, if \(y^{\prime }\) is missing, we just replace \(B=0\). This all assumes \(k,A,B,a,c\) do not depends on \(x\). The solution to the above is given by
The only thing we need to watch for, is the sign on \(B\) and on \(k^{n}\). If the sign is negative in the ode, then we use \(e^{\left ( \frac {Bx}{2A}\right ) }\) and if the sign is positive on \(B\) then we use \(e^{\left ( -\frac {Bx}{2A}\right ) }\). For \(k^{n}\), the leading sign do not change in the solution. Below are some examples
ODE | Values | solution |
\(y^{\prime \prime }-k^{n}xy=0\) | \(A=1,B=0,a=1,b=0\) | \(y=c_{1}\operatorname {AiryAi}\left ( -\left ( -k^{n}\right ) ^{\frac {1}{3}}x\right ) +c_{2}\operatorname {AiryBi}\left ( -\left ( -k^{n}\right ) ^{\frac {1}{3}}x\right ) \) |
\(y^{\prime \prime }+k^{n}xy=0\) | \(A=1,B=0,a=1,b=0\) | \(y=c_{1}\operatorname {AiryAi}\left ( -\left ( k^{n}\right ) ^{\frac {1}{3}}x\right ) +c_{2}\operatorname {AiryBi}\left ( -\left ( k^{n}\right ) ^{\frac {1}{3}}x\right ) \) |
\(y^{\prime \prime }-k^{2}\left ( x+3\right ) y=0\) | \(A=1,B=0,a=1,b=3\) | \(y=c_{1}\operatorname {AiryAi}\left ( -\left ( -k^{2}\right ) ^{\frac {1}{3}}\left ( x+1\right ) \right ) +c_{2}\operatorname {AiryBi}\left ( -\left ( -k^{2}\right ) ^{\frac {1}{3}}\left ( x+1\right ) \right ) \) |
\(5y^{\prime \prime }+2y^{\prime }-k^{4}\left ( 3x+4\right ) y=0\) | \(A=5,B=2,a=3,b=4\) | \(c_{1}e^{\left ( \frac {-x}{5}\right ) }\operatorname {AiryAi}\left ( -\frac {\left ( 5\left ( 3x+4\right ) k^{4}-1\right ) \left ( \frac {-k^{4}\left ( 3\right ) }{5}\right ) ^{\frac {1}{3}}}{15k^{4}}\right ) +c_{2}e^{\left ( \frac {-2x}{10}\right ) }\operatorname {AiryBi}\left ( -\frac {\left ( 5\left ( 3x+4\right ) k^{4}-1\right ) \left ( \frac {-k^{4}\left ( 3\right ) }{5}\right ) ^{\frac {1}{3}}}{15k^{4}}\right ) \) |