4.44.26 \(4 x^2 y'''(x)+8 x y''(x)+y'(x)=0\)

ODE
\[ 4 x^2 y'''(x)+8 x y''(x)+y'(x)=0 \] ODE Classification

[[_3rd_order, _missing_y]]

Book solution method
TO DO

Mathematica
cpu = 0.0232838 (sec), leaf count = 28

\[\left \{\left \{y(x)\to \sqrt {x} \left (c_2 \log (x)+2 c_1-2 c_2\right )+c_3\right \}\right \}\]

Maple
cpu = 0.008 (sec), leaf count = 16

\[ \left \{ y \left ( x \right ) = \left ( {\it \_C3}\,\ln \left ( x \right ) +{\it \_C2} \right ) \sqrt {x}+{\it \_C1} \right \} \] Mathematica raw input

DSolve[y'[x] + 8*x*y''[x] + 4*x^2*y'''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[3] + Sqrt[x]*(2*C[1] - 2*C[2] + C[2]*Log[x])}}

Maple raw input

dsolve(4*x^2*diff(diff(diff(y(x),x),x),x)+8*x*diff(diff(y(x),x),x)+diff(y(x),x) = 0, y(x),'implicit')

Maple raw output

y(x) = (_C3*ln(x)+_C2)*x^(1/2)+_C1