4.44.9 xy(x)y(x)xy(x)+y(x)=0

ODE
xy(x)y(x)xy(x)+y(x)=0 ODE Classification

[[_3rd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0575287 (sec), leaf count = 24

{{y(x)c1x+ic3sinh(x)c2cosh(x)}}

Maple
cpu = 0.087 (sec), leaf count = 18

{y(x)=_C1x+_C2ex+_C3ex} Mathematica raw input

DSolve[y[x] - x*y'[x] - y''[x] + x*y'''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> x*C[1] - C[2]*Cosh[x] + I*C[3]*Sinh[x]}}

Maple raw input

dsolve(x*diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*x+_C2*exp(x)+_C3*exp(-x)