4.44.5 \(4 y'''(x)-8 y''(x)-11 y'(x)-3 y(x)+18 e^x=0\)

ODE
\[ 4 y'''(x)-8 y''(x)-11 y'(x)-3 y(x)+18 e^x=0 \] ODE Classification

[[_3rd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0261675 (sec), leaf count = 37

\[\left \{\left \{y(x)\to e^{-x/2} \left (c_2 x+c_3 e^{7 x/2}+c_1+e^{3 x/2}\right )\right \}\right \}\]

Maple
cpu = 0.014 (sec), leaf count = 23

\[ \left \{ y \left ( x \right ) = \left ( {\it \_C3}\,x+{\it \_C2} \right ) {{\rm e}^{-{\frac {x}{2}}}}+{{\rm e}^{3\,x}}{\it \_C1}+{{\rm e}^{x}} \right \} \] Mathematica raw input

DSolve[18*E^x - 3*y[x] - 11*y'[x] - 8*y''[x] + 4*y'''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (E^((3*x)/2) + C[1] + x*C[2] + E^((7*x)/2)*C[3])/E^(x/2)}}

Maple raw input

dsolve(4*diff(diff(diff(y(x),x),x),x)-8*diff(diff(y(x),x),x)-11*diff(y(x),x)-3*y(x)+18*exp(x) = 0, y(x),'implicit')

Maple raw output

y(x) = (_C3*x+_C2)*exp(-1/2*x)+exp(3*x)*_C1+exp(x)