4.33.39 4axy(x)a(a+2)y(x)+4(1x2)y(x)=0

ODE
4axy(x)a(a+2)y(x)+4(1x2)y(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.177357 (sec), leaf count = 84

{{y(x)1x2(x21)a/4e12(a+2)2tanh1(x)(c2e(a+2)2tanh1(x)+(a+2)2c1)(a+2)2}}

Maple
cpu = 0.031 (sec), leaf count = 27

{y(x)=_C1(1+x)a2+1+_C2(1+x)a2+1} Mathematica raw input

DSolve[-(a*(2 + a)*y[x]) + 4*a*x*y'[x] + 4*(1 - x^2)*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (Sqrt[1 - x^2]*(-1 + x^2)^(a/4)*(Sqrt[(2 + a)^2]*C[1] + E^(Sqrt[(2 + a
)^2]*ArcTanh[x])*C[2]))/(Sqrt[(2 + a)^2]*E^((Sqrt[(2 + a)^2]*ArcTanh[x])/2))}}

Maple raw input

dsolve(4*(-x^2+1)*diff(diff(y(x),x),x)+4*a*x*diff(y(x),x)-a*(a+2)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*(1+x)^(1/2*a+1)+_C2*(-1+x)^(1/2*a+1)