4.33.38 4(x2+1)y(x)=x2+4xy(x)

ODE
4(x2+1)y(x)=x2+4xy(x) ODE Classification

[[_2nd_order, _missing_y]]

Book solution method
TO DO

Mathematica
cpu = 0.0716702 (sec), leaf count = 57

{{y(x)116(8c1x2+1x+8c1sinh1(x)+16c23x2+2x2+1xsinh1(x)+sinh1(x)2)}}

Maple
cpu = 0.117 (sec), leaf count = 39

{y(x)=x2(Arcsinh(x)4+_C1)x2+13x216+_C1Arcsinh(x)2+(Arcsinh(x))216+_C2116} Mathematica raw input

DSolve[4*(1 + x^2)*y''[x] == x^2 + 4*x*y'[x],y[x],x]

Mathematica raw output

{{y[x] -> (-3*x^2 + 2*x*Sqrt[1 + x^2]*ArcSinh[x] + ArcSinh[x]^2 + 8*x*Sqrt[1 + x
^2]*C[1] + 8*ArcSinh[x]*C[1] + 16*C[2])/16}}

Maple raw input

dsolve(4*(x^2+1)*diff(diff(y(x),x),x) = 4*x*diff(y(x),x)+x^2, y(x),'implicit')

Maple raw output

y(x) = 1/2*x*(1/4*arcsinh(x)+_C1)*(x^2+1)^(1/2)-3/16*x^2+1/2*_C1*arcsinh(x)+1/16
*arcsinh(x)^2+_C2-1/16