[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.124977 (sec), leaf count = 414
Maple ✓
cpu = 0.222 (sec), leaf count = 148
DSolve[(a1 + b1*x^k + c1*x^(2*k))*y[x] + x*(a0 + b0*x^k)*y'[x] + x^2*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (2^((1 + Sqrt[(1 - 2*a0 + a0^2 - 4*a1)*k^2]/k^2)/2)*x^((1 - a0 - k)/2)
*(x^k)^((1 + Sqrt[(1 - 2*a0 + a0^2 - 4*a1)*k^2]/k^2)/2)*(C[1]*HypergeometricU[(b
0*Sqrt[b0^2 - 4*c1]*k*(-1 + a0 + k) + b0^2*(k^2 + Sqrt[(1 - 2*a0 + a0^2 - 4*a1)*
k^2]) - 2*(b1*Sqrt[b0^2 - 4*c1]*k + 2*c1*(k^2 + Sqrt[(1 - 2*a0 + a0^2 - 4*a1)*k^
2])))/(2*(b0^2 - 4*c1)*k^2), (k^2 + Sqrt[(1 - 2*a0 + a0^2 - 4*a1)*k^2])/k^2, (Sq
rt[b0^2 - 4*c1]*x^k)/k] + C[2]*LaguerreL[-(b0*Sqrt[b0^2 - 4*c1]*k*(-1 + a0 + k)
+ b0^2*(k^2 + Sqrt[(1 - 2*a0 + a0^2 - 4*a1)*k^2]) - 2*(b1*Sqrt[b0^2 - 4*c1]*k +
2*c1*(k^2 + Sqrt[(1 - 2*a0 + a0^2 - 4*a1)*k^2])))/(2*(b0^2 - 4*c1)*k^2), Sqrt[(1
- 2*a0 + a0^2 - 4*a1)*k^2]/k^2, (Sqrt[b0^2 - 4*c1]*x^k)/k]))/E^(((b0 + Sqrt[b0^
2 - 4*c1])*x^k)/(2*k))}}
Maple raw input
dsolve(x^2*diff(diff(y(x),x),x)+x*(a0+b0*x^k)*diff(y(x),x)+(a1+b1*x^k+c1*x^(2*k))*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = x^(-1/2*a0+1/2-1/2*k)*exp(-1/2/k*b0*x^k)*(WhittakerW(-1/2/(b0^2-4*c1)^(1/
2)*((a0-1+k)*b0-2*b1)/k,1/2*(a0^2-2*a0-4*a1+1)^(1/2)/k,(b0^2-4*c1)^(1/2)/k*x^k)*
_C2+WhittakerM(-1/2/(b0^2-4*c1)^(1/2)*((a0-1+k)*b0-2*b1)/k,1/2*(a0^2-2*a0-4*a1+1
)^(1/2)/k,(b0^2-4*c1)^(1/2)/k*x^k)*_C1)