4.31.12 xy(x)(a0+b0xk)+y(x)(a1+b1xk+c1x2k)+x2y(x)=0

ODE
xy(x)(a0+b0xk)+y(x)(a1+b1xk+c1x2k)+x2y(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.124977 (sec), leaf count = 414

{{y(x)212(k2(a022a04a1+1)k2+1)x12(a0k+1)(xk)12(k2(a022a04a1+1)k2+1)e(b024c1+b0)xk2k(c1U((k2+(a022a04a1+1)k2)b02+b024c1k(a0+k1)b02(b1b024c1k+2c1(k2+(a022a04a1+1)k2))2(b024c1)k2,k2+(a022a04a1+1)k2k2,b024c1xkk)+c2L2(2c1(k2(a022a04a1+1)+k2)+b1kb024c1)+b02(k2(a022a04a1+1)+k2)+b0k(a0+k1)b024c12k2(b024c1)k2(a022a04a1+1)k2(b024c1xkk))}}

Maple
cpu = 0.222 (sec), leaf count = 148

{y(x)=xa02+12k2eb0xk2k(W(a01+k)b02b12k1b024c1,12ka022a04a1+1(xkkb024c1)_C2+M(a01+k)b02b12k1b024c1,12ka022a04a1+1(xkkb024c1)_C1)} Mathematica raw input

DSolve[(a1 + b1*x^k + c1*x^(2*k))*y[x] + x*(a0 + b0*x^k)*y'[x] + x^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (2^((1 + Sqrt[(1 - 2*a0 + a0^2 - 4*a1)*k^2]/k^2)/2)*x^((1 - a0 - k)/2)
*(x^k)^((1 + Sqrt[(1 - 2*a0 + a0^2 - 4*a1)*k^2]/k^2)/2)*(C[1]*HypergeometricU[(b
0*Sqrt[b0^2 - 4*c1]*k*(-1 + a0 + k) + b0^2*(k^2 + Sqrt[(1 - 2*a0 + a0^2 - 4*a1)*
k^2]) - 2*(b1*Sqrt[b0^2 - 4*c1]*k + 2*c1*(k^2 + Sqrt[(1 - 2*a0 + a0^2 - 4*a1)*k^
2])))/(2*(b0^2 - 4*c1)*k^2), (k^2 + Sqrt[(1 - 2*a0 + a0^2 - 4*a1)*k^2])/k^2, (Sq
rt[b0^2 - 4*c1]*x^k)/k] + C[2]*LaguerreL[-(b0*Sqrt[b0^2 - 4*c1]*k*(-1 + a0 + k) 
+ b0^2*(k^2 + Sqrt[(1 - 2*a0 + a0^2 - 4*a1)*k^2]) - 2*(b1*Sqrt[b0^2 - 4*c1]*k + 
2*c1*(k^2 + Sqrt[(1 - 2*a0 + a0^2 - 4*a1)*k^2])))/(2*(b0^2 - 4*c1)*k^2), Sqrt[(1
 - 2*a0 + a0^2 - 4*a1)*k^2]/k^2, (Sqrt[b0^2 - 4*c1]*x^k)/k]))/E^(((b0 + Sqrt[b0^
2 - 4*c1])*x^k)/(2*k))}}

Maple raw input

dsolve(x^2*diff(diff(y(x),x),x)+x*(a0+b0*x^k)*diff(y(x),x)+(a1+b1*x^k+c1*x^(2*k))*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = x^(-1/2*a0+1/2-1/2*k)*exp(-1/2/k*b0*x^k)*(WhittakerW(-1/2/(b0^2-4*c1)^(1/
2)*((a0-1+k)*b0-2*b1)/k,1/2*(a0^2-2*a0-4*a1+1)^(1/2)/k,(b0^2-4*c1)^(1/2)/k*x^k)*
_C2+WhittakerM(-1/2/(b0^2-4*c1)^(1/2)*((a0-1+k)*b0-2*b1)/k,1/2*(a0^2-2*a0-4*a1+1
)^(1/2)/k,(b0^2-4*c1)^(1/2)/k*x^k)*_C1)