4.31.11 \(4 x^3 y'(x)+x^2 y''(x)+\left (4 x^4+2 x^2+1\right ) y(x)=0\)

ODE
\[ 4 x^3 y'(x)+x^2 y''(x)+\left (4 x^4+2 x^2+1\right ) y(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0267278 (sec), leaf count = 60

\[\left \{\left \{y(x)\to \frac {1}{3} e^{-x^2} x^{\frac {1}{2}-\frac {i \sqrt {3}}{2}} \left (3 c_1-i \sqrt {3} c_2 x^{i \sqrt {3}}\right )\right \}\right \}\]

Maple
cpu = 0.081 (sec), leaf count = 36

\[ \left \{ y \left ( x \right ) ={{\rm e}^{-{x}^{2}}} \left ( {x}^{{\frac {1}{2}}-{\frac {i}{2}}\sqrt {3}}{\it \_C2}+{x}^{{\frac {1}{2}}+{\frac {i}{2}}\sqrt {3}}{\it \_C1} \right ) \right \} \] Mathematica raw input

DSolve[(1 + 2*x^2 + 4*x^4)*y[x] + 4*x^3*y'[x] + x^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (x^(1/2 - (I/2)*Sqrt[3])*(3*C[1] - I*Sqrt[3]*x^(I*Sqrt[3])*C[2]))/(3*E
^x^2)}}

Maple raw input

dsolve(x^2*diff(diff(y(x),x),x)+4*x^3*diff(y(x),x)+(4*x^4+2*x^2+1)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = exp(-x^2)*(x^(1/2-1/2*I*3^(1/2))*_C2+x^(1/2+1/2*I*3^(1/2))*_C1)