4.26.5 \(y''(x)-3 y'(x)-4 y(x)=10 \cos (2 x)\)

ODE
\[ y''(x)-3 y'(x)-4 y(x)=10 \cos (2 x) \] ODE Classification

[[_2nd_order, _linear, _nonhomogeneous]]

Book solution method
TO DO

Mathematica
cpu = 0.0123723 (sec), leaf count = 38

\[\left \{\left \{y(x)\to c_1 e^{-x}+c_2 e^{4 x}-\frac {3}{5} \sin (2 x)-\frac {4}{5} \cos (2 x)\right \}\right \}\]

Maple
cpu = 0.028 (sec), leaf count = 29

\[ \left \{ y \left ( x \right ) ={{\rm e}^{4\,x}}{\it \_C2}+{\it \_C1}\,{{\rm e}^{-x}}-{\frac {4\,\cos \left ( 2\,x \right ) }{5}}-{\frac {3\,\sin \left ( 2\,x \right ) }{5}} \right \} \] Mathematica raw input

DSolve[-4*y[x] - 3*y'[x] + y''[x] == 10*Cos[2*x],y[x],x]

Mathematica raw output

{{y[x] -> C[1]/E^x + E^(4*x)*C[2] - (4*Cos[2*x])/5 - (3*Sin[2*x])/5}}

Maple raw input

dsolve(diff(diff(y(x),x),x)-3*diff(y(x),x)-4*y(x) = 10*cos(2*x), y(x),'implicit')

Maple raw output

y(x) = exp(4*x)*_C2+_C1*exp(-x)-4/5*cos(2*x)-3/5*sin(2*x)