ODE
\[ y''(x)-3 y'(x)-4 y(x)=0 \] ODE Classification
[[_2nd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00455052 (sec), leaf count = 22
\[\left \{\left \{y(x)\to e^{-x} \left (c_2 e^{5 x}+c_1\right )\right \}\right \}\]
Maple ✓
cpu = 0.009 (sec), leaf count = 17
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{4\,x}}+{\it \_C2}\,{{\rm e}^{-x}} \right \} \] Mathematica raw input
DSolve[-4*y[x] - 3*y'[x] + y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (C[1] + E^(5*x)*C[2])/E^x}}
Maple raw input
dsolve(diff(diff(y(x),x),x)-3*diff(y(x),x)-4*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = _C1*exp(4*x)+_C2*exp(-x)