2.2.85 Problems 8401 to 8500

Table 2.171: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8401

\[ {}y^{\prime } = \frac {2 y}{x} \]

[_separable]

1.605

8402

\[ {}y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \]

[_separable]

1.681

8403

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

0.280

8404

\[ {}y^{\prime } = \frac {-x y-1}{4 x^{3} y-2 x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.600

8405

\[ {}\frac {{y^{\prime }}^{2}}{4}-x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.356

8406

\[ {}y^{\prime } = \sqrt {\frac {1+y}{y^{2}}} \]
i.c.

[_quadrature]

1454.228

8407

\[ {}y^{\prime } = \sqrt {1-x^{2}-y^{2}} \]

[‘y=_G(x,y’)‘]

1.552

8408

\[ {}y^{\prime }+\frac {y}{3} = \frac {\left (-2 x +1\right ) y^{4}}{3} \]

[_Bernoulli]

2.000

8409

\[ {}y^{\prime } = \sqrt {y}+x \]

[[_1st_order, _with_linear_symmetries], _Chini]

4.833

8410

\[ {}x^{2} y^{\prime }+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.785

8411

\[ {}y = x y^{\prime }+x^{2} {y^{\prime }}^{2} \]

[_separable]

0.930

8412

\[ {}\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

0.385

8413

\[ {}x y^{\prime } = 0 \]

[_quadrature]

0.382

8414

\[ {}\frac {y^{\prime }}{x +y} = 0 \]

[_quadrature]

0.375

8415

\[ {}\frac {y^{\prime }}{x} = 0 \]

[_quadrature]

0.381

8416

\[ {}y^{\prime } = 0 \]

[_quadrature]

0.372

8417

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.487

8418

\[ {}y^{\prime } = \frac {5 x^{2}-x y+y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.282

8419

\[ {}2 t +3 x+\left (x+2\right ) x^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.351

8420

\[ {}y^{\prime } = \frac {1}{1-y} \]
i.c.

[_quadrature]

1.563

8421

\[ {}p^{\prime } = a p-b p^{2} \]
i.c.

[_quadrature]

1.928

8422

\[ {}y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

1.653

8423

\[ {}f^{\prime } x -f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \]

[_Clairaut]

3.533

8424

\[ {}x y^{\prime }-2 y+b y^{2} = c \,x^{4} \]

[_rational, _Riccati]

1.505

8425

\[ {}x y^{\prime }-y+y^{2} = x^{{2}/{3}} \]

[_rational, _Riccati]

11.432

8426

\[ {}u^{\prime }+u^{2} = \frac {1}{x^{{4}/{5}}} \]

[_rational, _Riccati]

0.335

8427

\[ {}y y^{\prime }-y = x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.852

8428

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.839

8429

\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.703

8430

\[ {}y^{\prime \prime }+y^{\prime }+4 y = 1 \]

[[_2nd_order, _missing_x]]

13.559

8431

\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

73.062

8432

\[ {}y = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.390

8433

\[ {}y y^{\prime } = 1-x {y^{\prime }}^{3} \]

[_dAlembert]

0.233

8434

\[ {}f^{\prime } = \frac {1}{f} \]

[_quadrature]

1.254

8435

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

1.158

8436

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

1.333

8437

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

2.006

8438

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.867

8439

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.956

8440

\[ {}y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.959

8441

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.356

8442

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

1.305

8443

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

1.712

8444

\[ {}y^{\prime \prime } = f \left (t \right ) \]

[[_2nd_order, _quadrature]]

0.654

8445

\[ {}y^{\prime \prime } = k \]

[[_2nd_order, _quadrature]]

1.780

8446

\[ {}y^{\prime } = -4 \sin \left (x -y\right )-4 \]

[[_homogeneous, ‘class C‘], _dAlembert]

73.531

8447

\[ {}y^{\prime }+\sin \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.389

8448

\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

[[_2nd_order, _quadrature]]

1.639

8449

\[ {}y y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

0.142

8450

\[ {}y y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.530

8451

\[ {}y y^{\prime \prime } = x \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.080

8452

\[ {}y^{2} y^{\prime \prime } = x \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.124

8453

\[ {}y^{2} y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

0.147

8454

\[ {}3 y y^{\prime \prime } = \sin \left (x \right ) \]

[NONE]

0.145

8455

\[ {}3 y y^{\prime \prime }+y = 5 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

483.769

8456

\[ {}a y y^{\prime \prime }+b y = c \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.091

8457

\[ {}a y^{2} y^{\prime \prime }+b y^{2} = c \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.484

8458

\[ {}a y y^{\prime \prime }+b y = 0 \]

[[_2nd_order, _quadrature]]

0.615

8459

\[ {}\left [\begin {array}{c} x^{\prime }=9 x+4 y \\ y^{\prime }=-6 x-y \\ z^{\prime }=6 x+4 y+3 z \end {array}\right ] \]

system_of_ODEs

0.364

8460

\[ {}\left [\begin {array}{c} x^{\prime }=x-3 y \\ y^{\prime }=3 x+7 y \end {array}\right ] \]

system_of_ODEs

0.304

8461

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=2 x+5 y \end {array}\right ] \]

system_of_ODEs

0.303

8462

\[ {}\left [\begin {array}{c} x^{\prime }=7 x+y \\ y^{\prime }=-4 x+3 y \end {array}\right ] \]

system_of_ODEs

0.314

8463

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=y \\ z^{\prime }=z \end {array}\right ] \]

system_of_ODEs

0.280

8464

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y-z \\ y^{\prime }=-x+2 z \\ z^{\prime }=-x-2 y+4 z \end {array}\right ] \]

system_of_ODEs

0.355

8465

\[ {}x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \]

[_quadrature]

5.292

8466

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

[[_homogeneous, ‘class A‘], _dAlembert]

1.343

8467

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

1.300

8468

\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \]

[_separable]

114.593

8469

\[ {}y^{\prime } = y^{2}+x^{2} \]

[[_Riccati, _special]]

1.019

8470

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

1.283

8471

\[ {}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.067

8472

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

39.146

8473

\[ {}y^{\prime } = -1+x^{2}+y^{2} \]

[_Riccati]

1.810

8474

\[ {}y^{\prime } = 2 y \left (x \sqrt {y}-1\right ) \]
i.c.

[_Bernoulli]

1.373

8475

\[ {}y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

68.440

8476

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.141

8477

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.141

8478

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.018

8479

\[ {}y^{\prime \prime }-y y^{\prime } = 2 x \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

5.912

8480

\[ {}y^{\prime }-y^{2}-x -x^{2} = 0 \]

[_Riccati]

4.816

8481

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.984

8482

\[ {}y^{\prime \prime }-x y^{\prime }-x y-2 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.986

8483

\[ {}y^{\prime \prime }-x y^{\prime }-x y-3 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.996

8484

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2}-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.559

8485

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.697

8486

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{4}-6 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.726

8487

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{5}+24 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.688

8488

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.983

8489

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.470

8490

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.570

8491

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.656

8492

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.627

8493

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.606

8494

\[ {}y^{\prime \prime }-y^{\prime }-x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.257

8495

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.258

8496

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.356

8497

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.359

8498

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.360

8499

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.353

8500

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.306