2.2.58 Problems 5701 to 5800

Table 2.117: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

5701

\[ {}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0 \]

[_separable]

2.957

5702

\[ {}1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 0 \]

[_separable]

2.781

5703

\[ {}\sin \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.521

5704

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

37.183

5705

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.423

5706

\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

90.099

5707

\[ {}x y^{\prime }-y-\sqrt {y^{2}+x^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.477

5708

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.707

5709

\[ {}8 y+10 x +\left (7 x +5 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.090

5710

\[ {}2 x -y+1+\left (2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.082

5711

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.409

5712

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{2 x \left (x^{2}+1\right )} \]

[_linear]

1.178

5713

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

1.138

5714

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

3.297

5715

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

2.103

5716

\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \]

[_linear]

1.713

5717

\[ {}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2} \]

[_separable]

2.164

5718

\[ {}3 z^{2} z^{\prime }-a z^{3} = x +1 \]

[_rational, _Bernoulli]

1.636

5719

\[ {}z^{\prime }+2 x z = 2 a \,x^{3} z^{3} \]

[_Bernoulli]

1.204

5720

\[ {}z^{\prime }+z \cos \left (x \right ) = z^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

5.260

5721

\[ {}x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

1.962

5722

\[ {}x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

0.548

5723

\[ {}1+\frac {y^{2}}{x^{2}}-\frac {2 y y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

0.311

5724

\[ {}\frac {3 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.382

5725

\[ {}x +y y^{\prime }+\frac {x y^{\prime }}{y^{2}+x^{2}}-\frac {y}{y^{2}+x^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

0.402

5726

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

0.336

5727

\[ {}{\mathrm e}^{x} \left (x^{2}+y^{2}+2 x \right )+2 y \,{\mathrm e}^{x} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli]

0.371

5728

\[ {}n \cos \left (n x +m y\right )-m \sin \left (m x +n y\right )+\left (m \cos \left (n x +m y\right )-n \sin \left (m x +n y\right )\right ) y^{\prime } = 0 \]

[_exact]

0.276

5729

\[ {}\frac {x}{\sqrt {1+x^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y}{y^{2}+x^{2}}-\frac {x y^{\prime }}{y^{2}+x^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

0.635

5730

\[ {}\frac {x^{n} y^{\prime }}{b y^{2}-c \,x^{2 a}}-\frac {a y x^{a -1}}{b y^{2}-c \,x^{2 a}}+x^{a -1} = 0 \]

[_Riccati]

6.634

5731

\[ {}2 x y+\left (y^{2}-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.365

5732

\[ {}\frac {1}{x}+\frac {y^{\prime }}{y}+\frac {2}{y}-\frac {2 y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.332

5733

\[ {}-y+x y^{\prime } = \sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.605

5734

\[ {}8 y+10 x +\left (7 x +5 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.116

5735

\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.681

5736

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.019

5737

\[ {}\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y+\left (x \cos \left (\frac {y}{x}\right )-y \sin \left (\frac {y}{x}\right )\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

0.531

5738

\[ {}\left (y^{2} x^{2}+x y\right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.414

5739

\[ {}\left (x^{3} y^{3}+y^{2} x^{2}+x y+1\right ) y+\left (x^{3} y^{3}-y^{2} x^{2}-x y+1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.860

5740

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

0.388

5741

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

0.338

5742

\[ {}2 x y+\left (y^{2}-3 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.310

5743

\[ {}y+\left (2 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.351

5744

\[ {}x y^{\prime }-a y+y^{2} = x^{-2 a} \]

[_rational, _Riccati]

0.637

5745

\[ {}x y^{\prime }-a y+y^{2} = x^{-\frac {2 a}{3}} \]

[_rational, _Riccati]

2.435

5746

\[ {}u^{\prime }+u^{2} = \frac {c}{x^{{4}/{3}}} \]

[_rational, [_Riccati, _special]]

0.313

5747

\[ {}u^{\prime }+b u^{2} = \frac {c}{x^{4}} \]

[_rational, [_Riccati, _special]]

0.278

5748

\[ {}u^{\prime }-u^{2} = \frac {2}{x^{{8}/{3}}} \]

[_rational, [_Riccati, _special]]

0.350

5749

\[ {}\frac {\sqrt {f \,x^{4}+c \,x^{3}+c \,x^{2}+b x +a}\, y^{\prime }}{\sqrt {a +b y+c y^{2}+c y^{3}+f y^{4}}} = -1 \]

[_separable]

8.758

5750

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

0.839

5751

\[ {}{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}} = 0 \]

[_quadrature]

0.383

5752

\[ {}{y^{\prime }}^{2} = \frac {1-x}{x} \]

[_quadrature]

0.290

5753

\[ {}{y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.931

5754

\[ {}y = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

0.601

5755

\[ {}x = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

0.227

5756

\[ {}y = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

[_quadrature]

1.756

5757

\[ {}x = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

[_quadrature]

1.094

5758

\[ {}y^{\prime }-\frac {\sqrt {1+{y^{\prime }}^{2}}}{x} = 0 \]

[_quadrature]

1.209

5759

\[ {}x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0 \]

[_quadrature]

2.121

5760

\[ {}1+{y^{\prime }}^{2} = \frac {\left (x +a \right )^{2}}{2 a x +x^{2}} \]

[_quadrature]

0.608

5761

\[ {}y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.380

5762

\[ {}y = x y^{\prime }+\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

3.269

5763

\[ {}y = x y^{\prime }+x \sqrt {1+{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

32.394

5764

\[ {}y = x y^{\prime }+a x \sqrt {1+{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

337.064

5765

\[ {}x -y y^{\prime } = a {y^{\prime }}^{2} \]

[_dAlembert]

641.628

5766

\[ {}x +y y^{\prime } = a \sqrt {1+{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

488.152

5767

\[ {}y y^{\prime } = x +y^{2}-y^{2} {y^{\prime }}^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7.134

5768

\[ {}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.657

5769

\[ {}y-2 x y^{\prime } = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.224

5770

\[ {}\frac {y-x y^{\prime }}{y^{2}+y^{\prime }} = \frac {y-x y^{\prime }}{1+x^{2} y^{\prime }} \]

[_separable]

0.527

5771

\[ {}2 x y+\left (y^{2}+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

3.475

5772

\[ {}\left (x +\sqrt {y^{2}-x y}\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.411

5773

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.649

5774

\[ {}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.191

5775

\[ {}2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

25.534

5776

\[ {}y^{2}+\left (x \sqrt {y^{2}-x^{2}}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

10.810

5777

\[ {}\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.965

5778

\[ {}y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.711

5779

\[ {}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.463

5780

\[ {}x \,{\mathrm e}^{\frac {y}{x}}-y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.197

5781

\[ {}y^{2}+x^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9.121

5782

\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y = x y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

4.743

5783

\[ {}y^{\prime }-\frac {y}{x}+\csc \left (\frac {y}{x}\right ) = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

4.519

5784

\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.744

5785

\[ {}x +2 y-4-\left (2 x -4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.850

5786

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.393

5787

\[ {}x +y+1+\left (2 x +2 y+2\right ) y^{\prime } = 0 \]

[_quadrature]

0.519

5788

\[ {}x +y-1+\left (2 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.264

5789

\[ {}x +y-1-\left (x -y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.777

5790

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.233

5791

\[ {}7 y-3+\left (2 x +1\right ) y^{\prime } = 0 \]

[_separable]

1.620

5792

\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.283

5793

\[ {}x +2 y+\left (y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.687

5794

\[ {}3 x -2 y+4-\left (2 x +7 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

45.924

5795

\[ {}x +y+\left (3 x +3 y-4\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.662

5796

\[ {}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.992

5797

\[ {}y+7+\left (2 x +y+3\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

21.966

5798

\[ {}x +y+2-\left (x -y-4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.837

5799

\[ {}3 x^{2} y+8 x y^{2}+\left (x^{3}+8 x^{2} y+12 y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

0.330

5800

\[ {}\frac {2 x y+1}{y}+\frac {\left (y-x \right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.345