2.2.5 Problems 401 to 500

Table 2.11: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

401

\[ {}y^{\prime } = 4 y \]

[_quadrature]

0.264

402

\[ {}2 y^{\prime }+3 y = 0 \]

[_quadrature]

0.273

403

\[ {}y^{\prime }+2 x y = 0 \]

[_separable]

0.333

404

\[ {}y^{\prime } = x y \]

[_separable]

0.364

405

\[ {}\left (x -2\right ) y^{\prime }+y = 0 \]

[_separable]

0.319

406

\[ {}\left (2 x -1\right ) y^{\prime }+2 y = 0 \]

[_separable]

0.334

407

\[ {}2 \left (x +1\right ) y^{\prime }+y = 0 \]

[_separable]

0.338

408

\[ {}\left (x -1\right ) y^{\prime }+2 y = 0 \]

[_separable]

0.385

409

\[ {}2 \left (x -1\right ) y^{\prime } = 3 y \]

[_separable]

0.347

410

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

0.364

411

\[ {}y^{\prime \prime } = 4 y \]

[[_2nd_order, _missing_x]]

0.342

412

\[ {}y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.385

413

\[ {}y^{\prime \prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

0.338

414

\[ {}y^{\prime } x +y = 0 \]

[_separable]

0.230

415

\[ {}2 y^{\prime } x = y \]

[_separable]

0.269

416

\[ {}x^{2} y^{\prime }+y = 0 \]

[_separable]

0.118

417

\[ {}x^{3} y^{\prime } = 2 y \]

[_separable]

0.132

418

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.395

419

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.377

420

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.474

421

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.482

422

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.786

423

\[ {}y^{\prime \prime } = y^{\prime }+y \]
i.c.

[[_2nd_order, _missing_x]]

0.471

424

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

0.246

425

\[ {}y^{\prime \prime \prime } = y \]
i.c.

[[_3rd_order, _missing_x]]

0.161

426

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.459

427

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.476

428

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.363

429

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.489

430

\[ {}\left (x^{2}-3\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

0.384

431

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

0.411

432

\[ {}\left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.477

433

\[ {}\left (-x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +16 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.484

434

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

0.508

435

\[ {}3 y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.418

436

\[ {}5 y^{\prime \prime }-2 y^{\prime } x +10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.402

437

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.382

438

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.414

439

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

0.335

440

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.277

441

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.459

442

\[ {}y^{\prime \prime }+y^{\prime } x -2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.391

443

\[ {}y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.399

444

\[ {}\left (-x^{2}+2 x \right ) y^{\prime \prime }-6 \left (x -1\right ) y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.567

445

\[ {}\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.458

446

\[ {}\left (4 x^{2}+16 x +17\right ) y^{\prime \prime } = 8 y \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.456

447

\[ {}\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.482

448

\[ {}y^{\prime \prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.359

449

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x +2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.556

450

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.435

451

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+y x^{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.437

452

\[ {}y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.484

453

\[ {}y^{\prime \prime }+{\mathrm e}^{-x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.571

454

\[ {}\cos \left (x \right ) y^{\prime \prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.791

455

\[ {}x y^{\prime \prime }+y^{\prime } \sin \left (x \right )+x y = 0 \]

[_Lienard]

1.558

456

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 \alpha y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.457

457

\[ {}x y^{\prime \prime }+\left (-x^{3}+x \right ) y^{\prime }+y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.883

458

\[ {}x y^{\prime \prime }+x^{2} y^{\prime }+\left ({\mathrm e}^{x}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.762

459

\[ {}x^{2} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.257

460

\[ {}3 x^{3} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.168

461

\[ {}x \left (x +1\right ) y^{\prime \prime }+2 y^{\prime }+3 x y = 0 \]

[[_Emden, _Fowler]]

1.477

462

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.646

463

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } \sin \left (x \right )+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.758

464

\[ {}\left (2 x^{3}+6 x^{2}\right ) y^{\prime \prime }+21 y^{\prime } x +9 \left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.933

465

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x +x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.417

466

\[ {}\left (1-x \right )^{2} y^{\prime \prime }+\left (2 x -2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.556

467

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

0.468

468

\[ {}\left (x -2\right )^{3} y^{\prime \prime }+3 \left (x -2\right )^{2} y^{\prime }+x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.580

469

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+\left (x -2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.524

470

\[ {}\left (x^{2}-9\right )^{2} y^{\prime \prime }+\left (x^{2}+9\right ) y^{\prime }+\left (x^{2}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.700

471

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-\left (x^{2}-4\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.546

472

\[ {}x^{3} \left (1-x \right ) y^{\prime \prime }+\left (3 x +2\right ) y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.184

473

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.712

474

\[ {}2 x y^{\prime \prime }+3 y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

0.699

475

\[ {}2 x y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

0.684

476

\[ {}3 x y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

0.704

477

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -\left (2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.617

478

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -\left (-2 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.631

479

\[ {}6 x^{2} y^{\prime \prime }+7 y^{\prime } x -\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.637

480

\[ {}3 x^{2} y^{\prime \prime }+2 y^{\prime } x +x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.536

481

\[ {}2 x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.717

482

\[ {}2 x y^{\prime \prime }+\left (-2 x^{2}+1\right ) y^{\prime }-4 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.605

483

\[ {}x y^{\prime \prime }+2 y^{\prime }+9 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.655

484

\[ {}x y^{\prime \prime }+2 y^{\prime }-4 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.570

485

\[ {}4 x y^{\prime \prime }+8 y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.618

486

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.537

487

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-4 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.724

488

\[ {}2 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.754

489

\[ {}\left (5 x^{3}+2 x^{2}\right ) y^{\prime \prime }+\left (-x^{2}+3 x \right ) y^{\prime }-\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.897

490

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } \sin \left (x \right )-\cos \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.740

491

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.207

492

\[ {}x^{3} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.145

493

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.658

494

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

1.219

495

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.646

496

\[ {}x \left (x -1\right ) \left (x +1\right )^{2} y^{\prime \prime }+2 x \left (x -3\right ) \left (x +1\right ) y^{\prime }-2 \left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.597

497

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\gamma -\left (\alpha +\beta +1\right ) x \right ) y^{\prime }-\alpha \beta y = 0 \]

[_Jacobi]

1.110

498

\[ {}x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.665

499

\[ {}x y^{\prime \prime }+\left (5-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.677

500

\[ {}x y^{\prime \prime }+\left (3 x +5\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.760