2.2.42 Problems 4101 to 4200

Table 2.85: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4101

\[ {}y^{\prime }-y \tan \left (x \right ) = x \]
i.c.

[_linear]

1.742

4102

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]
i.c.

[_separable]

3.414

4103

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.232

4104

\[ {}x y^{\prime } = x +y \]
i.c.

[_linear]

1.717

4105

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2.770

4106

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]
i.c.

[_quadrature]

0.906

4107

\[ {}y^{\prime }-3 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x} \]
i.c.

[[_linear, ‘class A‘]]

1.888

4108

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

0.667

4109

\[ {}x y^{\prime }+2 y = \left (3 x +2\right ) {\mathrm e}^{3 x} \]
i.c.

[_linear]

1.988

4110

\[ {}2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right ) = 0 \]
i.c.

[_separable]

5.327

4111

\[ {}x y y^{\prime } = \left (x +1\right ) \left (y+1\right ) \]
i.c.

[_separable]

2.067

4112

\[ {}y^{\prime } = \frac {2 x -y}{y+2 x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

27.632

4113

\[ {}y^{\prime } = \frac {3 x -y+1}{3 y-x +5} \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.283

4114

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1441.016

4115

\[ {}x +\left (2-x +2 y\right ) y^{\prime } = x y \left (y^{\prime }-1\right ) \]

[_quadrature]

0.708

4116

\[ {}\cos \left (x \right ) y^{\prime }+y \sin \left (x \right ) = 1 \]
i.c.

[_linear]

2.305

4117

\[ {}\left (x +y^{2}\right ) y^{\prime }+y-x^{2} = 0 \]
i.c.

[_exact, _rational]

2.751

4118

\[ {}y^{\prime \prime }+8 y^{\prime }+15 y = 0 \]

[[_2nd_order, _missing_x]]

0.912

4119

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

[[_2nd_order, _missing_x]]

0.889

4120

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.987

4121

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.985

4122

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

0.855

4123

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

2.855

4124

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

2.022

4125

\[ {}y^{\prime \prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

2.308

4126

\[ {}4 y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2.102

4127

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

1.956

4128

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.452

4129

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 1 \]

[[_2nd_order, _missing_x]]

1.038

4130

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

1.185

4131

\[ {}y^{\prime \prime }+y = x^{3}+x \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.958

4132

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.125

4133

\[ {}y^{\prime \prime }+2 y = x +{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3.283

4134

\[ {}y^{\prime \prime }+2 y = {\mathrm e}^{x}+2 \]

[[_2nd_order, _with_linear_symmetries]]

3.727

4135

\[ {}y^{\prime \prime }-y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.199

4136

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.021

4137

\[ {}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.230

4138

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = x^{3}+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

77.747

4139

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.417

4140

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}+2 \]

[[_2nd_order, _with_linear_symmetries]]

2.056

4141

\[ {}y^{\prime \prime }+2 n y^{\prime }+n^{2} y = A \cos \left (x p \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.336

4142

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.049

4143

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-12 y = 0 \]

[[_3rd_order, _missing_x]]

0.101

4144

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

0.056

4145

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 0 \]

[[_3rd_order, _missing_x]]

0.053

4146

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.060

4147

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.051

4148

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.061

4149

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0 \]

[[_high_order, _missing_x]]

0.059

4150

\[ {}y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.079

4151

\[ {}y^{\prime \prime \prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.059

4152

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.371

4153

\[ {}y^{\prime \prime }+2 y^{\prime }-2 y = x^{2}+1 \]

[[_2nd_order, _with_linear_symmetries]]

1.405

4154

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{8} = \frac {\sin \left (x \right )}{8}-\frac {\cos \left (x \right )}{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

42.944

4155

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x}-2 \,{\mathrm e}^{2 x}+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.063

4156

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x}+x \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.328

4157

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.687

4158

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.614

4159

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 x \,{\mathrm e}^{2 x}+{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.171

4160

\[ {}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \cos \left (2 x +3\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.192

4161

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.151

4162

\[ {}y^{\prime \prime }+9 y = 8 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.584

4163

\[ {}25 y^{\prime \prime }-30 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.398

4164

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = \left (4 x^{2}+24 x +18\right ) {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.747

4165

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.109

4166

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2} \\ y_{2}^{\prime }=3 y_{2}-2 y_{1} \end {array}\right ] \]

system_of_ODEs

0.449

4167

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+y_{2} \\ y_{2}^{\prime }=3 y_{2}-y_{1} \end {array}\right ] \]

system_of_ODEs

0.431

4168

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}-y_{2} \\ y_{2}^{\prime }=2 y_{1}+3 y_{2} \end {array}\right ] \]

system_of_ODEs

0.573

4169

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=4 y_{2} \\ y_{2}^{\prime }=4 y_{2}-y_{1} \end {array}\right ] \]

system_of_ODEs

0.460

4170

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+y_{2} \\ y_{2}^{\prime }=y_{1}-y_{2} \end {array}\right ] \]

system_of_ODEs

0.577

4171

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2} \\ y_{2}^{\prime }=y_{1} \end {array}\right ] \]

system_of_ODEs

0.441

4172

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2}-y_{1} \\ y_{2}^{\prime }=3 y_{1}-4 y_{2} \end {array}\right ] \]

system_of_ODEs

0.640

4173

\[ {}\left [\begin {array}{c} 2 y_{1}^{\prime }=y_{1}+y_{2} \\ 2 y_{2}^{\prime }=5 y_{2}-3 y_{1} \end {array}\right ] \]
i.c.

system_of_ODEs

0.595

4174

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-2 y_{2} \\ y_{2}^{\prime }=y_{1}+2 y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.606

4175

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=1 \\ y_{2}^{\prime }=2 y_{1} \end {array}\right ] \]

system_of_ODEs

0.464

4176

\[ {}\left [\begin {array}{c} 2 y_{1}^{\prime }+y_{2}^{\prime }-4 y_{1}-y_{2}={\mathrm e}^{x} \\ y_{1}^{\prime }+3 y_{1}+y_{2}=0 \end {array}\right ] \]

system_of_ODEs

0.694

4177

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2} \\ y_{2}^{\prime }=-y_{1}+y_{3} \\ y_{3}^{\prime }=-y_{2} \end {array}\right ] \]

system_of_ODEs

0.555

4178

\[ {}y^{\prime \prime }+\frac {y}{x^{2}} = 0 \]

[[_Emden, _Fowler]]

0.421

4179

\[ {}y^{\prime \prime }-\frac {\left (-3 x^{2}+x \right ) y^{\prime }}{2 x^{3}+2 x^{2}}+\frac {y}{2 x^{3}+2 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.679

4180

\[ {}y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }-\frac {y}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.669

4181

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

[_Lienard]

0.595

4182

\[ {}y^{\prime \prime }-2 y^{\prime }+\left (\frac {1}{4 x^{2}}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.717

4183

\[ {}y^{\prime \prime }-\frac {\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right )}{x \left (-x^{2}+2\right )} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.812

4184

\[ {}y^{\prime \prime }-\frac {3 y^{\prime }}{x \left (1-x \right )}+\frac {2 y}{x \left (1-x \right )} = 0 \]

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.661

4185

\[ {}y^{\prime \prime }+\frac {\left (1-x \right ) y^{\prime }}{2 x}-\frac {y}{4 x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.647

4186

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{2 x}+\frac {y}{4 x} = 0 \]

[[_Emden, _Fowler]]

0.676

4187

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1+\frac {1}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.528

4188

\[ {}y^{\prime \prime }+\frac {\left (1-5 x \right ) y^{\prime }}{-x^{2}+x}-\frac {4 y}{-x^{2}+x} = 0 \]

[_Jacobi]

0.640

4189

\[ {}y^{\prime \prime }+\frac {\left (-1+x \right ) y^{\prime }}{x \left (x +1\right )}-\frac {y}{x \left (x +1\right )} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.641

4190

\[ {}y y^{\prime } = x \]

[_separable]

4.459

4191

\[ {}y^{\prime }-y = x^{3} \]

[[_linear, ‘class A‘]]

1.554

4192

\[ {}y^{\prime }+y \cot \left (x \right ) = x \]

[_linear]

1.548

4193

\[ {}y^{\prime }+y \cot \left (x \right ) = \tan \left (x \right ) \]

[_linear]

1.831

4194

\[ {}y^{\prime }+y \tan \left (x \right ) = \cot \left (x \right ) \]

[_linear]

1.797

4195

\[ {}y^{\prime }+y \ln \left (x \right ) = x^{-x} \]

[_linear]

1.333

4196

\[ {}x y^{\prime }+y = x \]

[_linear]

2.796

4197

\[ {}x y^{\prime }-y = x^{3} \]

[_linear]

1.722

4198

\[ {}x y^{\prime }+n y = x^{n} \]

[_linear]

1.043

4199

\[ {}x y^{\prime }-n y = x^{n} \]

[_linear]

0.828

4200

\[ {}\left (x^{3}+x \right ) y^{\prime }+y = x \]

[_linear]

3.155