# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.072 |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-18 y^{\prime }-40 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.072 |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.068 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.075 |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.075 |
|
\[
{}y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.073 |
|
\[
{}x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.076 |
|
\[
{}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.439 |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
0.128 |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.129 |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 18 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.079 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 4 x^{2}+5
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.149 |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 4 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.124 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 24 \,{\mathrm e}^{-3 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.135 |
|
\[
{}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = 6 \,{\mathrm e}^{-x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.121 |
|
\[
{}y^{\prime \prime }+y = 6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.902 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.062 |
|
\[
{}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.717 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.131 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
13.005 |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 4 x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.125 |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 9 \,{\mathrm e}^{-x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.132 |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}+3 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.175 |
|
\[
{}y^{\prime \prime }+9 y = 5 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.000 |
|
\[
{}y^{\prime \prime }-y = 9 x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.290 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = -10 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.617 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 4 \cos \left (x \right )-2 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.622 |
|
\[
{}y^{\prime \prime }+\omega ^{2} y = \frac {F_{0} \cos \left (\omega t \right )}{m}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.187 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+6 y = 7 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
19.028 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 4 x \,{\mathrm e}^{x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.144 |
|
\[
{}y^{\prime \prime \prime \prime }+104 y^{\prime \prime \prime }+2740 y^{\prime \prime } = 5 \,{\mathrm e}^{-2 x} \cos \left (3 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
0.211 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.989 |
|
\[
{}y^{\prime \prime }+6 y = \sin \left (x \right )^{2} \cos \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
5.438 |
|
\[
{}y^{\prime \prime }-16 y = 20 \cos \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.579 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 50 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.542 |
|
\[
{}y^{\prime \prime }-y = 10 \,{\mathrm e}^{2 x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.510 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 169 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.508 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 40 \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.714 |
|
\[
{}y^{\prime \prime }+y = 3 \,{\mathrm e}^{x} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.760 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \,{\mathrm e}^{-x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
5.408 |
|
\[
{}y^{\prime \prime }-4 y = 100 x \,{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.695 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
13.688 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+10 y = 24 \,{\mathrm e}^{x} \cos \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
20.135 |
|
\[
{}y^{\prime \prime }+16 y = 34 \,{\mathrm e}^{x}+16 \cos \left (4 x \right )-8 \sin \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
6.839 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 4 \,{\mathrm e}^{3 x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.337 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.210 |
|
\[
{}y^{\prime \prime }+9 y = 18 \sec \left (3 x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.074 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.013 |
|
\[
{}y^{\prime \prime }-4 y = \frac {8}{{\mathrm e}^{2 x}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.521 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
43.078 |
|
\[
{}y^{\prime \prime }+9 y = \frac {36}{4-\cos \left (3 x \right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
29.645 |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = \frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.859 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 4 \,{\mathrm e}^{3 x} \sec \left (2 x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
13.763 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )+4 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
5.741 |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )+2 x^{2}+5 x +1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
5.021 |
|
\[
{}y^{\prime \prime }-y = 2 \tanh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.019 |
|
\[
{}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \frac {{\mathrm e}^{m x}}{x^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.078 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.292 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{\sqrt {-x^{2}+4}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.362 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+17 y = \frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
50.790 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {4 \,{\mathrm e}^{-2 x}}{x^{2}+1}+2 x^{2}-1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.029 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 15 \,{\mathrm e}^{-2 x} \ln \left (x \right )+25 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.263 |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {2 \,{\mathrm e}^{x}}{x^{2}}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.330 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 36 \,{\mathrm e}^{2 x} \ln \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.358 |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = \frac {2 \,{\mathrm e}^{-x}}{x^{2}+1}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.375 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 12 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.140 |
|
\[
{}y^{\prime \prime }-9 y = F \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.887 |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+4 y = F \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.803 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = F \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.905 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-12 y = F \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.994 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.638 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.862 |
|
\[
{}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.642 |
|
\[
{}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \cos \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.963 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 9 \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
5.889 |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 8 x \ln \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
24.847 |
|
\[
{}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
12.729 |
|
\[
{}x^{2} y^{\prime \prime }+6 x y^{\prime }+6 y = 4 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.361 |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \frac {x^{2}}{\ln \left (x \right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.008 |
|
\[
{}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+m^{2} y = x^{m} \ln \left (x \right )^{k}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.301 |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
4.324 |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }+25 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
2.386 |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.370 |
|
\[
{}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.356 |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.426 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[_Gegenbauer] |
✓ |
0.384 |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{x}+4 x^{2} y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.427 |
|
\[
{}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.429 |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.619 |
|
\[
{}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+2 y = 8 x^{2} {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.517 |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 8 x^{4}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.457 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 15 \,{\mathrm e}^{3 x} \sqrt {x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.552 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 4 \,{\mathrm e}^{2 x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.575 |
|
\[
{}4 x^{2} y^{\prime \prime }+y = \sqrt {x}\, \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.463 |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.091 |
|
\[
{}y^{\prime \prime \prime }+11 y^{\prime \prime }+36 y^{\prime }+26 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.079 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.127 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.135 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.136 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = \sin \left (4 x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.188 |
|