2.2.29 Problems 2801 to 2900

Table 2.59: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

2801

\[ {}\left [\begin {array}{c} x^{\prime }=-5 x+3 y \\ y^{\prime }=-x+y \end {array}\right ] \]

system_of_ODEs

0.567

2802

\[ {}\left [\begin {array}{c} x^{\prime }=x-4 y \\ y^{\prime }=4 x-7 y \end {array}\right ] \]

system_of_ODEs

0.320

2803

\[ {}\left [\begin {array}{c} x^{\prime }=-7 x+y-6 z \\ y^{\prime }=10 x-4 y+12 z \\ z^{\prime }=2 x-y+z \end {array}\right ] \]

system_of_ODEs

0.609

2804

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+2 y+4 z \\ y^{\prime }=2 x+2 z \\ z^{\prime }=4 x+2 y+3 z \end {array}\right ] \]

system_of_ODEs

0.473

2805

\[ {}\left [\begin {array}{c} x^{\prime }=2 y+z \\ y^{\prime }=-x-3 y-z \\ z^{\prime }=x+y-z \end {array}\right ] \]

system_of_ODEs

0.510

2806

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+y+z \\ y^{\prime }=-3 x+2 y+3 z \\ z^{\prime }=x-y-2 z \end {array}\right ] \]

system_of_ODEs

0.409

2807

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \\ y^{\prime }=-2 x \\ z^{\prime }=2 h \\ h^{\prime }=-2 z \end {array}\right ] \]

system_of_ODEs

0.580

2808

\[ {}\left [\begin {array}{c} x^{\prime }=2 y+z \\ y^{\prime }=-2 x+h \\ z^{\prime }=2 h \\ h^{\prime }=-2 z \end {array}\right ] \]

system_of_ODEs

0.644

2809

\[ {}x^{\prime } = x \left (1-x\right ) \]

[_quadrature]

1.020

2810

\[ {}x^{\prime } = -x \left (1-x\right ) \]

[_quadrature]

0.957

2811

\[ {}x^{\prime } = x^{2} \]

[_quadrature]

1.430

2812

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{2} \\ x_{2}^{\prime }=-\frac {\left (x_{1}^{2}+\sqrt {x_{1}^{2}+4 x_{2}^{2}}\right ) x_{1}}{2} \end {array}\right ] \]

system_of_ODEs

0.058

2813

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-x_{2}+1 \\ x_{2}^{\prime }=2 x_{1}-x_{2}+5 \end {array}\right ] \]

system_of_ODEs

0.899

2814

\[ {}\left [\begin {array}{c} x^{\prime }=x-x^{3}-x y \\ y^{\prime }=2 y-y^{5}-y \,x^{4} \end {array}\right ] \]

system_of_ODEs

0.062

2815

\[ {}\left [\begin {array}{c} x^{\prime }=x^{2}+y^{2}+1 \\ y^{\prime }=x^{2}-y^{2} \end {array}\right ] \]

system_of_ODEs

0.050

2816

\[ {}\left [\begin {array}{c} x^{\prime }=x^{2}+y^{2}-1 \\ y^{\prime }=2 x y \end {array}\right ] \]

system_of_ODEs

0.057

2817

\[ {}\left [\begin {array}{c} x^{\prime }=6 x-6 x^{2}-2 x y \\ y^{\prime }=4 y-4 y^{2}-2 x y \end {array}\right ] \]

system_of_ODEs

0.055

2818

\[ {}\left [\begin {array}{c} x^{\prime }=\tan \left (x+y\right ) \\ y^{\prime }=x+x^{3} \end {array}\right ] \]

system_of_ODEs

0.050

2819

\[ {}\left [\begin {array}{c} x^{\prime }={\mathrm e}^{y}-x \\ y^{\prime }={\mathrm e}^{x}+y \end {array}\right ] \]

system_of_ODEs

0.053

2820

\[ {}z^{\prime \prime }+z^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.395

2821

\[ {}z^{\prime \prime }+z+z^{5} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

708.952

2822

\[ {}z^{\prime \prime }+{\mathrm e}^{z^{2}} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.682

2823

\[ {}z^{\prime \prime }+\frac {z}{1+z^{2}} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.195

2824

\[ {}z^{\prime \prime }+z-2 z^{3} = 0 \]

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

5.505

2825

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-5 x_{1}+x_{2} \\ x_{2}^{\prime }=x_{1}-5 x_{2} \end {array}\right ] \]

system_of_ODEs

0.365

2826

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{2} \\ x_{2}^{\prime }=8 x_{1}-6 x_{2} \end {array}\right ] \]

system_of_ODEs

0.420

2827

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}-x_{2} \\ x_{2}^{\prime }=-2 x_{1}+5 x_{2} \end {array}\right ] \]

system_of_ODEs

0.408

2828

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}-x_{2} \\ x_{2}^{\prime }=x_{1}-6 x_{2} \end {array}\right ] \]

system_of_ODEs

0.313

2829

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-4 x_{2} \\ x_{2}^{\prime }=-8 x_{1}+4 x_{2} \end {array}\right ] \]

system_of_ODEs

0.610

2830

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-x_{2} \\ x_{2}^{\prime }=5 x_{1}-3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.420

2831

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{2} \\ x_{2}^{\prime }=-2 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.732

2832

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2} \\ x_{2}^{\prime }=5 x_{1}-3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.506

2833

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{2} \\ x_{2}^{\prime }=-5 x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.427

2834

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{2} \\ x_{2}^{\prime }=-9 x_{1} \end {array}\right ] \]

system_of_ODEs

0.405

2835

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.298

2836

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.397

2837

\[ {}y^{\prime \prime }-\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.897

2838

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.310

2839

\[ {}y^{\prime \prime }-2 y^{\prime }+\left (1+\lambda \right ) y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.623

2840

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.385

2841

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

[_separable]

1.191

2842

\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

3.762

2843

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

1.825

2844

\[ {}y^{\prime } x +y = 0 \]

[_separable]

1.442

2845

\[ {}y^{\prime } = 2 x y \]

[_separable]

1.123

2846

\[ {}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \]

[_separable]

2.621

2847

\[ {}\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0 \]

[_separable]

2.238

2848

\[ {}\left (x +1\right ) y^{\prime }-1+y = 0 \]

[_separable]

1.415

2849

\[ {}y^{\prime } \tan \left (x \right )-y = 1 \]

[_separable]

1.525

2850

\[ {}y+3+\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

2.049

2851

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

3.480

2852

\[ {}x^{\prime } = 1-\sin \left (2 t \right ) \]

[_quadrature]

0.400

2853

\[ {}y^{\prime } x +y = y^{2} \]

[_separable]

1.527

2854

\[ {}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

3.567

2855

\[ {}\sec \left (x \right ) \cos \left (y\right )^{2} = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

[_separable]

7.840

2856

\[ {}y^{\prime } x +y = x y \left (y^{\prime }-1\right ) \]

[_separable]

1.477

2857

\[ {}x y+\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

1.589

2858

\[ {}y = x y+x^{2} y^{\prime } \]

[_separable]

1.514

2859

\[ {}\tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

6.332

2860

\[ {}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \]

[_separable]

4.025

2861

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.532

2862

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

1.776

2863

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

3.174

2864

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]
i.c.

[_separable]

2.666

2865

\[ {}y^{\prime } = {\mathrm e}^{y} \]
i.c.

[_quadrature]

1.259

2866

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = 1 \]
i.c.

[_quadrature]

1.484

2867

\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \]
i.c.

[_separable]

3.281

2868

\[ {}x^{2}+3 y^{\prime } x = y^{3}+2 y \]
i.c.

[_rational, _Abel]

17.620

2869

\[ {}\left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5 \]
i.c.

[_separable]

4.462

2870

\[ {}\left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2 \]
i.c.

[_separable]

3.885

2871

\[ {}x +y = y^{\prime } x \]

[_linear]

1.291

2872

\[ {}\left (x +y\right ) y^{\prime }+x = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.431

2873

\[ {}y^{\prime } x -y = \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.287

2874

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.678

2875

\[ {}y^{\prime } x -y = \sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

119.919

2876

\[ {}y y^{\prime }+x = 2 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.209

2877

\[ {}y^{\prime } x -y+\sqrt {y^{2}-x^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.366

2878

\[ {}x^{2}+y^{2} = x y^{\prime } y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.244

2879

\[ {}\left (x y-x^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

77.657

2880

\[ {}y^{\prime } x +y = 2 \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

21.532

2881

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.974

2882

\[ {}y \left (x^{2}-x y+y^{2}\right )+x y^{\prime } \left (x^{2}+x y+y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

173.829

2883

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.745

2884

\[ {}y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.864

2885

\[ {}x^{2}+y^{2} = 2 x y^{\prime } y \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.083

2886

\[ {}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.426

2887

\[ {}{\mathrm e}^{\frac {y}{x}} x +y = y^{\prime } x \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

3.414

2888

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.523

2889

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

4.595

2890

\[ {}\left (3 x y-2 x^{2}\right ) y^{\prime } = 2 y^{2}-x y \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9.353

2891

\[ {}y^{\prime } = \frac {y}{x -k \sqrt {x^{2}+y^{2}}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

140.811

2892

\[ {}y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

27.041

2893

\[ {}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

106.757

2894

\[ {}x +y-\left (x -y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.428

2895

\[ {}x +\left (x -2 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

2.829

2896

\[ {}2 x -y+1+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.775

2897

\[ {}x -y+2+\left (x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.557

2898

\[ {}x -y+\left (y-x +1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.562

2899

\[ {}y^{\prime } = \frac {x +y-1}{x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.411

2900

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.977