2.2.25 Problems 2401 to 2500

Table 2.51: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

2401

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.280

2402

\[ {}y^{\prime \prime }+y = \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.784

2403

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.113

2404

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.221

2405

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.211

2406

\[ {}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.906

2407

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t^{{5}/{2}} {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.605

2408

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sqrt {t +1} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.458

2409

\[ {}y^{\prime \prime }-y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.826

2410

\[ {}y^{\prime \prime }+\frac {t^{2} y}{4} = f \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.372

2411

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

[[_2nd_order, _with_linear_symmetries]]

1.913

2412

\[ {}m y^{\prime \prime }+c y^{\prime }+k y = F_{0} \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.392

2413

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.556

2414

\[ {}y^{\prime \prime }-t y = 0 \]

[[_Emden, _Fowler]]

0.507

2415

\[ {}\left (t^{2}+2\right ) y^{\prime \prime }-t y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.652

2416

\[ {}y^{\prime \prime }-t^{3} y = 0 \]

[[_Emden, _Fowler]]

0.507

2417

\[ {}t \left (2-t \right ) y^{\prime \prime }-6 \left (t -1\right ) y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.669

2418

\[ {}y^{\prime \prime }+t^{2} y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.493

2419

\[ {}y^{\prime \prime }-t^{3} y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.497

2420

\[ {}y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.635

2421

\[ {}y^{\prime \prime }-2 t y^{\prime }+\lambda y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.645

2422

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+\alpha \left (1+\alpha \right ) y = 0 \]

[_Gegenbauer]

0.800

2423

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-t y^{\prime }+\alpha ^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.717

2424

\[ {}y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.542

2425

\[ {}y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.557

2426

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.534

2427

\[ {}y^{\prime \prime }+y^{\prime }+t y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.513

2428

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.738

2429

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.639

2430

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{-t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.934

2431

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

1.138

2432

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

1.131

2433

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.252

2434

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.204

2435

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.333

2436

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.250

2437

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.129

2438

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.386

2439

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2.538

2440

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.977

2441

\[ {}t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.427

2442

\[ {}t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.195

2443

\[ {}\sin \left (t \right ) y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+\frac {y}{t} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.957

2444

\[ {}\left ({\mathrm e}^{t}-1\right ) y^{\prime \prime }+{\mathrm e}^{t} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.023

2445

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (t +1\right )}+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.336

2446

\[ {}t^{3} y^{\prime \prime }+\sin \left (t^{3}\right ) y^{\prime }+t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.034

2447

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-\left (t +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.925

2448

\[ {}2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \]

[_Laguerre]

0.892

2449

\[ {}2 t y^{\prime \prime }+\left (t +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.925

2450

\[ {}2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (t +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.936

2451

\[ {}4 t y^{\prime \prime }+3 y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

0.876

2452

\[ {}2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.919

2453

\[ {}t^{3} y^{\prime \prime }-t y^{\prime }-\left (t^{2}+\frac {5}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.130

2454

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.938

2455

\[ {}t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

[_Lienard]

0.819

2456

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+3 t \right ) y^{\prime }-t y = 0 \]

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.877

2457

\[ {}t^{2} y^{\prime \prime }+t \left (t +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.981

2458

\[ {}t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

0.977

2459

\[ {}t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.327

2460

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-\left (t +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.378

2461

\[ {}t y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.243

2462

\[ {}t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.792

2463

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+t^{2} y = 0 \]

[_Lienard]

0.645

2464

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-v^{2}\right ) y = 0 \]

[_Bessel]

0.841

2465

\[ {}t y^{\prime \prime }+\left (-t +1\right ) y^{\prime }+\lambda y = 0 \]

[_Laguerre]

0.972

2466

\[ {}2 \sin \left (t \right ) y^{\prime \prime }+\left (-t +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.140

2467

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.888

2468

\[ {}t y^{\prime \prime }+y^{\prime }-4 y = 0 \]

[[_Emden, _Fowler]]

0.828

2469

\[ {}t^{2} y^{\prime \prime }-t \left (t +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.838

2470

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-1\right ) y = 0 \]

[_Bessel]

1.243

2471

\[ {}t y^{\prime \prime }+3 y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

1.262

2472

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

1.411

2473

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2.241

2474

\[ {}\frac {2 t y}{t^{2}+1}+y^{\prime } = \frac {1}{t^{2}+1} \]

[_linear]

1.062

2475

\[ {}y^{\prime }+y = {\mathrm e}^{t} t \]

[[_linear, ‘class A‘]]

1.070

2476

\[ {}t^{2} y+y^{\prime } = 1 \]

[_linear]

1.085

2477

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

1.127

2478

\[ {}\frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

[_linear]

2.046

2479

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2.447

2480

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2.217

2481

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2.384

2482

\[ {}y^{\prime }-2 t y = t \]
i.c.

[_separable]

1.509

2483

\[ {}t y+y^{\prime } = t +1 \]
i.c.

[_linear]

1.563

2484

\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \]
i.c.

[_linear]

1.539

2485

\[ {}y^{\prime }-2 t y = 1 \]
i.c.

[_linear]

1.146

2486

\[ {}t y+\left (t^{2}+1\right ) y^{\prime } = \left (t^{2}+1\right )^{{5}/{2}} \]

[_linear]

1.692

2487

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

1.531

2488

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.598

2489

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

1.802

2490

\[ {}y^{\prime } = \left (t +1\right ) \left (1+y\right ) \]

[_separable]

1.161

2491

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2.112

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

1.934

2493

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

[_separable]

2.634

2494

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2.828

2495

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

1.905

2496

\[ {}\sqrt {1+y^{2}}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2.540

2497

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]
i.c.

[_separable]

2.273

2498

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]
i.c.

[_separable]

2.755

2499

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

1.807

2500

\[ {}3 t y^{\prime } = \cos \left (t \right ) y \]
i.c.

[_separable]

2.366