2.4.21 second order kovacic

Table 2.487: second order kovacic

#

ODE

CAS classification

Solved?

11

\[ {}x^{\prime \prime } = 50 \]
i.c.

[[_2nd_order, _quadrature]]

12

\[ {}x^{\prime \prime } = -20 \]
i.c.

[[_2nd_order, _quadrature]]

13

\[ {}x^{\prime \prime } = 3 t \]
i.c.

[[_2nd_order, _quadrature]]

14

\[ {}x^{\prime \prime } = 2 t +1 \]
i.c.

[[_2nd_order, _quadrature]]

15

\[ {}x^{\prime \prime } = 4 \left (3+t \right )^{2} \]
i.c.

[[_2nd_order, _quadrature]]

16

\[ {}x^{\prime \prime } = \frac {1}{\sqrt {t +4}} \]
i.c.

[[_2nd_order, _quadrature]]

17

\[ {}x^{\prime \prime } = \frac {1}{\left (1+t \right )^{3}} \]
i.c.

[[_2nd_order, _quadrature]]

18

\[ {}x^{\prime \prime } = 50 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

147

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

149

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

150

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

152

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

215

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

216

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

217

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

218

\[ {}y^{\prime \prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

219

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

220

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

221

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

222

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

223

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

224

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

225

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

226

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

227

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

228

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

229

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

230

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

234

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

235

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

[[_2nd_order, _missing_x]]

236

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

237

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

238

\[ {}2 y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

239

\[ {}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

240

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

241

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

242

\[ {}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0 \]

[[_2nd_order, _missing_x]]

243

\[ {}35 y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

244

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

245

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

246

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x -3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

247

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

248

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

257

\[ {}y^{\prime \prime }+y = 3 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

258

\[ {}y^{\prime \prime }-4 y = 12 \]
i.c.

[[_2nd_order, _missing_x]]

259

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \]
i.c.

[[_2nd_order, _missing_x]]

260

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 2 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

261

\[ {}y^{\prime \prime }+2 y = 4+6 x \]

[[_2nd_order, _with_linear_symmetries]]

262

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

263

\[ {}y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

271

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

272

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

273

\[ {}y^{\prime \prime }+y^{\prime }-10 y = 0 \]

[[_2nd_order, _missing_x]]

274

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

275

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

276

\[ {}y^{\prime \prime }+5 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

277

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

278

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

279

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

291

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

292

\[ {}9 y^{\prime \prime }+6 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

293

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

309

\[ {}y^{\prime \prime }+2 i y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

310

\[ {}y^{\prime \prime }-i y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

311

\[ {}y^{\prime \prime } = \left (-2+2 i \sqrt {3}\right ) y \]

[[_2nd_order, _missing_x]]

315

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

316

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

322

\[ {}y^{\prime \prime }+16 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

323

\[ {}y^{\prime \prime }-y^{\prime }+2 y = 3 x +4 \]

[[_2nd_order, _with_linear_symmetries]]

324

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

325

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 3 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

326

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

327

\[ {}2 y^{\prime \prime }+4 y^{\prime }+7 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

328

\[ {}y^{\prime \prime }-4 y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

329

\[ {}y^{\prime \prime }-4 y = \cosh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

330

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 1+x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

331

\[ {}2 y^{\prime \prime }+9 y = 2 \cos \left (3 x \right )+3 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

334

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

337

\[ {}y^{\prime \prime }+9 y = 2 x^{2} {\mathrm e}^{3 x}+5 \]

[[_2nd_order, _linear, _nonhomogeneous]]

338

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) x +\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

342

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

344

\[ {}y^{\prime \prime }+4 y = 3 x \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

346

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

347

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = x \,{\mathrm e}^{3 x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

351

\[ {}y^{\prime \prime }+4 y = 2 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

352

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

353

\[ {}y^{\prime \prime }+9 y = \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

354

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

355

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x +1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

358

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \sin \left (3 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

363

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

364

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

365

\[ {}y^{\prime \prime }+y = x \cos \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

366

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

367

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 3 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

368

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

369

\[ {}y^{\prime \prime }-4 y = \sinh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

370

\[ {}y^{\prime \prime }+4 y = \cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

371

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

372

\[ {}y^{\prime \prime }+9 y = 2 \sec \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

373

\[ {}y^{\prime \prime }+y = \csc \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

374

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

375

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

376

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

377

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

378

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

379

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 8 x^{{4}/{3}} \]

[[_2nd_order, _with_linear_symmetries]]

380

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

381

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

382

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

383

\[ {}x^{\prime \prime }+9 x = 10 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

384

\[ {}x^{\prime \prime }+4 x = 5 \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

385

\[ {}x^{\prime \prime }+100 x = 225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

386

\[ {}x^{\prime \prime }+25 x = 90 \cos \left (4 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

387

\[ {}m x^{\prime \prime }+k x = F_{0} \cos \left (\omega t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

388

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 10 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

389

\[ {}x^{\prime \prime }+3 x^{\prime }+5 x = -4 \cos \left (5 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

390

\[ {}2 x^{\prime \prime }+2 x^{\prime }+x = 3 \sin \left (10 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

391

\[ {}x^{\prime \prime }+3 x^{\prime }+3 x = 8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

392

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

393

\[ {}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

394

\[ {}x^{\prime \prime }+2 x^{\prime }+26 x = 600 \cos \left (10 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

395

\[ {}x^{\prime \prime }+8 x^{\prime }+25 x = 200 \cos \left (t \right )+520 \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

396

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 2 \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

397

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

398

\[ {}x^{\prime \prime }+6 x^{\prime }+45 x = 50 \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

399

\[ {}x^{\prime \prime }+10 x^{\prime }+650 x = 100 \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

516

\[ {}x y^{\prime \prime }-y^{\prime }+36 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

522

\[ {}16 x^{2} y^{\prime \prime }-\left (-144 x^{3}+5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

526

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

807

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

808

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

809

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

810

\[ {}y^{\prime \prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

811

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

812

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

813

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

814

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

815

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

816

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

817

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

818

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

819

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

820

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

821

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

822

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

823

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

824

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

[[_2nd_order, _missing_x]]

825

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

826

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

827

\[ {}2 y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

828

\[ {}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

829

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

830

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

831

\[ {}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0 \]

[[_2nd_order, _missing_x]]

832

\[ {}35 y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

833

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

834

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

835

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x -3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

836

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

837

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

838

\[ {}y^{\prime \prime }+y = 3 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

839

\[ {}y^{\prime \prime }-4 y = 12 \]
i.c.

[[_2nd_order, _missing_x]]

840

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \]
i.c.

[[_2nd_order, _missing_x]]

841

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 2 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

842

\[ {}y^{\prime \prime }+2 y = 4 \]

[[_2nd_order, _missing_x]]

843

\[ {}y^{\prime \prime }+2 y = 6 x \]

[[_2nd_order, _with_linear_symmetries]]

844

\[ {}y^{\prime \prime }+2 y = 4+6 x \]

[[_2nd_order, _with_linear_symmetries]]

845

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

846

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

847

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 0 \]

[[_2nd_order, _missing_x]]

848

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

849

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

850

\[ {}y^{\prime \prime }+5 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

851

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

852

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

853

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

854

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

855

\[ {}9 y^{\prime \prime }+6 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

856

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

857

\[ {}y^{\prime \prime }-2 i y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

858

\[ {}y^{\prime \prime }-i y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

859

\[ {}y^{\prime \prime } = \left (-2+2 i \sqrt {3}\right ) y \]

[[_2nd_order, _missing_x]]

860

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

861

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

862

\[ {}\frac {x^{\prime \prime }}{2}+3 x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

863

\[ {}3 x^{\prime \prime }+30 x^{\prime }+63 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

864

\[ {}x^{\prime \prime }+8 x^{\prime }+16 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

865

\[ {}2 x^{\prime \prime }+12 x^{\prime }+50 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

866

\[ {}4 x^{\prime \prime }+20 x^{\prime }+169 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

867

\[ {}2 x^{\prime \prime }+16 x^{\prime }+40 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

868

\[ {}x^{\prime \prime }+10 x^{\prime }+125 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

869

\[ {}y^{\prime \prime }+16 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

870

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 3 x +4 \]

[[_2nd_order, _with_linear_symmetries]]

871

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

872

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 3 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

873

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

874

\[ {}2 y^{\prime \prime }+4 y^{\prime }+7 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

875

\[ {}y^{\prime \prime }-4 y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

876

\[ {}y^{\prime \prime }-4 y = \cosh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

877

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 1+x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

878

\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 x \right )+3 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

879

\[ {}y^{\prime \prime }+9 y = 2 x^{2} {\mathrm e}^{3 x}+5 \]

[[_2nd_order, _linear, _nonhomogeneous]]

880

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

881

\[ {}y^{\prime \prime }+4 y = 3 x \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

882

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

883

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = x \,{\mathrm e}^{3 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

884

\[ {}y^{\prime \prime }+4 y = 2 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

885

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

886

\[ {}y^{\prime \prime }+9 y = \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

887

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

888

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x +1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

889

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

890

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

891

\[ {}y^{\prime \prime }+y = x \cos \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

892

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

893

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 3 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

894

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

895

\[ {}y^{\prime \prime }-4 y = \sinh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

896

\[ {}y^{\prime \prime }+4 y = \cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

897

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

898

\[ {}y^{\prime \prime }+9 y = 2 \sec \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

899

\[ {}y^{\prime \prime }+y = \csc \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

900

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

901

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

902

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

903

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

904

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

905

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 8 x^{{4}/{3}} \]

[[_2nd_order, _with_linear_symmetries]]

906

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

907

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

908

\[ {}x^{\prime \prime }+9 x = 10 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

909

\[ {}x^{\prime \prime }+4 x = 5 \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

910

\[ {}x^{\prime \prime }+100 x = 225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

911

\[ {}x^{\prime \prime }+25 x = 90 \cos \left (4 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

912

\[ {}m x^{\prime \prime }+k x = F_{0} \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

913

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 10 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

914

\[ {}x^{\prime \prime }+3 x^{\prime }+5 x = -4 \cos \left (5 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

915

\[ {}2 x^{\prime \prime }+2 x^{\prime }+x = 3 \sin \left (10 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

916

\[ {}x^{\prime \prime }+3 x^{\prime }+3 x = 8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

917

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

918

\[ {}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

919

\[ {}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

920

\[ {}x^{\prime \prime }+2 x^{\prime }+26 x = 600 \cos \left (10 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

921

\[ {}x^{\prime \prime }+8 x^{\prime }+25 x = 200 \cos \left (t \right )+520 \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1249

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

1250

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1251

\[ {}6 y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1252

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1253

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1254

\[ {}4 y^{\prime \prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

1255

\[ {}y^{\prime \prime }-9 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1256

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

1257

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1258

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1259

\[ {}6 y^{\prime \prime }-5 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1260

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1261

\[ {}y^{\prime \prime }+5 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1262

\[ {}2 y^{\prime \prime }+y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1263

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1264

\[ {}4 y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1265

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1266

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1267

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1268

\[ {}4 y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1269

\[ {}y^{\prime \prime }-\left (2 \alpha -1\right ) y^{\prime }+\alpha \left (\alpha -1\right ) y = 0 \]

[[_2nd_order, _missing_x]]

1270

\[ {}y^{\prime \prime }+\left (3-\alpha \right ) y^{\prime }-2 \left (\alpha -1\right ) y = 0 \]

[[_2nd_order, _missing_x]]

1271

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1272

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1273

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1274

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

1275

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

[[_2nd_order, _missing_x]]

1276

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1277

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

1278

\[ {}4 y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1279

\[ {}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

1280

\[ {}9 y^{\prime \prime }+9 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

1281

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

1282

\[ {}y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

1283

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1284

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1285

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1286

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1287

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1288

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1289

\[ {}u^{\prime \prime }-u^{\prime }+2 u = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1290

\[ {}5 u^{\prime \prime }+2 u^{\prime }+7 u = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1291

\[ {}y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1292

\[ {}y^{\prime \prime }+2 a y^{\prime }+\left (a^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1293

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1294

\[ {}t^{2} y^{\prime \prime }+4 y^{\prime } t +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1295

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +\frac {5 y}{4} = 0 \]

[[_Emden, _Fowler]]

1296

\[ {}t^{2} y^{\prime \prime }-4 y^{\prime } t -6 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1297

\[ {}t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1298

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +5 y = 0 \]

[[_Emden, _Fowler]]

1299

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t -3 y = 0 \]

[[_Emden, _Fowler]]

1300

\[ {}t^{2} y^{\prime \prime }+7 y^{\prime } t +10 y = 0 \]

[[_Emden, _Fowler]]

1302

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1303

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1304

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1305

\[ {}4 y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

1306

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1307

\[ {}y^{\prime \prime }-2 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

1308

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1309

\[ {}4 y^{\prime \prime }+17 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1310

\[ {}16 y^{\prime \prime }+24 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1311

\[ {}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1312

\[ {}2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1313

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1314

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1315

\[ {}9 y^{\prime \prime }+6 y^{\prime }+82 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1316

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1317

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1318

\[ {}y^{\prime \prime }-y^{\prime }+\frac {y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1327

\[ {}t^{2} y^{\prime \prime }-3 y^{\prime } t +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1328

\[ {}t^{2} y^{\prime \prime }+2 y^{\prime } t +\frac {y}{4} = 0 \]

[[_Emden, _Fowler]]

1329

\[ {}2 t^{2} y^{\prime \prime }-5 y^{\prime } t +5 y = 0 \]

[[_Emden, _Fowler]]

1330

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1331

\[ {}4 t^{2} y^{\prime \prime }-8 y^{\prime } t +9 y = 0 \]

[[_Emden, _Fowler]]

1332

\[ {}t^{2} y^{\prime \prime }+5 y^{\prime } t +13 y = 0 \]

[[_Emden, _Fowler]]

1333

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

1334

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1335

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1336

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1337

\[ {}y^{\prime \prime }+y = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1338

\[ {}y^{\prime \prime }+9 y = 9 \sec \left (3 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1339

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 t}}{t^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1340

\[ {}y^{\prime \prime }+4 y = 3 \csc \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1341

\[ {}y^{\prime \prime }+y = 2 \sec \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1342

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1343

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1344

\[ {}y^{\prime \prime }+4 y = g \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1345

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1346

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1347

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

1348

\[ {}\left (-t +1\right ) y^{\prime \prime }+y^{\prime } t -y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1349

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1350

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1351

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } t +2 y = 4 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1352

\[ {}t^{2} y^{\prime \prime }+7 y^{\prime } t +5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1353

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

1354

\[ {}\left (-t +1\right ) y^{\prime \prime }+y^{\prime } t -y = 2 \left (t -1\right ) {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1355

\[ {}u^{\prime \prime }+2 u = 0 \]

[[_2nd_order, _missing_x]]

1356

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1357

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (\frac {t}{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1358

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1359

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (6 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1517

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1737

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1738

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1739

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1740

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1741

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1742

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1743

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

1744

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1745

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1746

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1747

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

1748

\[ {}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = 0 \]

[[_Emden, _Fowler]]

1749

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1750

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1751

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1754

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1756

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1805

\[ {}y^{\prime \prime }+9 y = \tan \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1806

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \sec \left (2 x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1807

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {4}{1+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1808

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 3 \,{\mathrm e}^{x} \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1809

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 14 x^{{3}/{2}} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1810

\[ {}y^{\prime \prime }-y = \frac {4 \,{\mathrm e}^{-x}}{1-{\mathrm e}^{-2 x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1811

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 2 x^{2}+2 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1812

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1813

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1814

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 4 \,{\mathrm e}^{-x \left (x +2\right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1815

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{{5}/{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1816

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{4} \sin \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1817

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1819

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1820

\[ {}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = x^{a +1} \]

[[_2nd_order, _with_linear_symmetries]]

1821

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = x^{3} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1822

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1824

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 8 x^{{5}/{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1825

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y = x^{{7}/{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1826

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y = 3 x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1827

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1828

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = x^{{3}/{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1829

\[ {}x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+2 \left (x +3\right ) y = x^{4} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1830

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 2 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1831

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1832

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 2 \left (x -1\right )^{2} {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1833

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = x^{{5}/{2}} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1834

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }-\left (6 x -8\right ) y = \left (3 x -1\right )^{2} {\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1835

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y = \left (x -1\right )^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1836

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (x +1\right ) y = \left (x -1\right )^{3} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1837

\[ {}\left (x -1\right )^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 2 x \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1838

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = -2 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1839

\[ {}\left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (x +2\right ) y^{\prime }-2 y = \left (2 x +3\right )^{2} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2362

\[ {}2 t^{2} y^{\prime \prime }+3 y^{\prime } t -y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2363

\[ {}y^{\prime \prime }+y^{\prime } t +y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2364

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2365

\[ {}6 y^{\prime \prime }-7 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2366

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2367

\[ {}3 y^{\prime \prime }+6 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

2368

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2369

\[ {}2 y^{\prime \prime }+y^{\prime }-10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2370

\[ {}5 y^{\prime \prime }+5 y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2371

\[ {}y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2372

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2373

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

[[_Emden, _Fowler]]

2374

\[ {}t^{2} y^{\prime \prime }+5 y^{\prime } t -5 y = 0 \]

[[_Emden, _Fowler]]

2375

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t -2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2376

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2377

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2378

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

2379

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

2380

\[ {}4 y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2381

\[ {}y^{\prime \prime }+y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2382

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2383

\[ {}2 y^{\prime \prime }-y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2384

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2385

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2386

\[ {}t^{2} y^{\prime \prime }+2 y^{\prime } t +2 y = 0 \]

[[_Emden, _Fowler]]

2387

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2388

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2389

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2390

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2391

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2392

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2393

\[ {}y^{\prime \prime }-\frac {2 \left (1+t \right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2394

\[ {}y^{\prime \prime }-4 y^{\prime } t +\left (4 t^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2395

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y = 0 \]

[_Gegenbauer]

2396

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2397

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +6 y = 0 \]

[_Gegenbauer]

2398

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (1+t \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2399

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2400

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2401

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_Emden, _Fowler]]

2402

\[ {}y^{\prime \prime }+y = \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2403

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2404

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2405

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2406

\[ {}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2407

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t^{{5}/{2}} {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2408

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sqrt {1+t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2409

\[ {}y^{\prime \prime }-y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2411

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

[[_2nd_order, _with_linear_symmetries]]

2412

\[ {}m y^{\prime \prime }+c y^{\prime }+k y = F_{0} \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2431

\[ {}t^{2} y^{\prime \prime }-5 y^{\prime } t +9 y = 0 \]

[[_Emden, _Fowler]]

2432

\[ {}t^{2} y^{\prime \prime }+5 y^{\prime } t -5 y = 0 \]

[[_Emden, _Fowler]]

2433

\[ {}2 t^{2} y^{\prime \prime }+3 y^{\prime } t -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2434

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2435

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2436

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_Emden, _Fowler]]

2437

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2438

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2439

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2440

\[ {}t^{2} y^{\prime \prime }-3 y^{\prime } t +4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2543

\[ {}2 t^{2} y^{\prime \prime }+3 y^{\prime } t -y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2544

\[ {}y^{\prime \prime }+y^{\prime } t +y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2545

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2546

\[ {}6 y^{\prime \prime }-7 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2547

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2548

\[ {}3 y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

2549

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2550

\[ {}2 y^{\prime \prime }+y^{\prime }-10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2551

\[ {}5 y^{\prime \prime }+5 y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2552

\[ {}y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2553

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2554

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

[[_Emden, _Fowler]]

2555

\[ {}t^{2} y^{\prime \prime }+5 y^{\prime } t -2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2556

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2557

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

2558

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

2559

\[ {}4 y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2560

\[ {}y^{\prime \prime }+y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2561

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2562

\[ {}2 y^{\prime \prime }-y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2563

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2564

\[ {}y^{\prime \prime }+w^{2} y = 0 \]

[[_2nd_order, _missing_x]]

2565

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2566

\[ {}t^{2} y^{\prime \prime }+2 y^{\prime } t +2 y = 0 \]

[[_Emden, _Fowler]]

2567

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2568

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2569

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2570

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2571

\[ {}6 y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2572

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2581

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2582

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_Emden, _Fowler]]

2583

\[ {}y^{\prime \prime }+y = \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2584

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2585

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2586

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2587

\[ {}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2588

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t^{{5}/{2}} {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2589

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sqrt {1+t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2590

\[ {}y^{\prime \prime }-y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2591

\[ {}t^{2} y^{\prime \prime }-2 y = t^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2593

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

[[_2nd_order, _with_linear_symmetries]]

2594

\[ {}y^{\prime \prime }+3 y = t^{3}-1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2595

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t \,{\mathrm e}^{\alpha t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2596

\[ {}y^{\prime \prime }-y = t^{2} {\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2597

\[ {}y^{\prime \prime }+y^{\prime }+y = t^{2}+t +1 \]

[[_2nd_order, _with_linear_symmetries]]

2598

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

2599

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = t^{2} {\mathrm e}^{7 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2600

\[ {}y^{\prime \prime }+4 y = t \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2601

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = \left (3 t^{7}-5 t^{4}\right ) {\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2602

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \cos \left (t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2603

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \cos \left (t \right )^{2} {\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2604

\[ {}y^{\prime \prime }+y^{\prime }-6 y = \sin \left (t \right )+t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2605

\[ {}y^{\prime \prime }+y^{\prime }+4 y = t^{2}+\left (2 t +3\right ) \left (1+\cos \left (t \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2606

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{t}+{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2607

\[ {}y^{\prime \prime }+2 y^{\prime } = 1+t^{2}+{\mathrm e}^{-2 t} \]

[[_2nd_order, _missing_y]]

2608

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2609

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \cos \left (2 t \right ) \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2610

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t^{{3}/{2}} {\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2628

\[ {}t^{2} y^{\prime \prime }+5 y^{\prime } t -5 y = 0 \]

[[_Emden, _Fowler]]

2629

\[ {}2 t^{2} y^{\prime \prime }+3 y^{\prime } t -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2630

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2631

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2632

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_Emden, _Fowler]]

2633

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2634

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2635

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +2 y = 0 \]

[[_Emden, _Fowler]]

2636

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t -2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2637

\[ {}t^{2} y^{\prime \prime }-3 y^{\prime } t +4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2835

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2836

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2837

\[ {}y^{\prime \prime }-\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2838

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2839

\[ {}y^{\prime \prime }-2 y^{\prime }+\left (1+\lambda \right ) y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2840

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3059

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

3060

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 0 \]

[[_2nd_order, _missing_x]]

3061

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

3062

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

3063

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

3064

\[ {}y^{\prime \prime }-2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

3065

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

3066

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

3067

\[ {}2 y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

3088

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

3089

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

3100

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

3111

\[ {}y^{\prime \prime }-4 y = 3 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3112

\[ {}y^{\prime \prime }+y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3113

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3114

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3115

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3116

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3117

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3119

\[ {}y^{\prime \prime }-4 y = x +{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3120

\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3121

\[ {}y^{\prime \prime }-y^{\prime }-6 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3122

\[ {}-2 y^{\prime \prime }+3 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3123

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

3125

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3128

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3131

\[ {}y^{\prime \prime }+2 n y^{\prime }+n^{2} y = 5 \cos \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3132

\[ {}y^{\prime \prime }+9 y = \left (1+\sin \left (3 x \right )\right ) \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3133

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 x -{\mathrm e}^{-4 x}+\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3135

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3137

\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3138

\[ {}y^{\prime \prime }+4 y = 12 \cos \left (x \right )^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3139

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3140

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3141

\[ {}2 y^{\prime \prime }+y^{\prime } = 8 \sin \left (2 x \right )+{\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _missing_y]]

3142

\[ {}y^{\prime \prime }+y = 3 \sin \left (x \right ) x \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3143

\[ {}2 y^{\prime \prime }+5 y^{\prime }-3 y = \sin \left (x \right )-8 x \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3144

\[ {}8 y^{\prime \prime }-y = x \,{\mathrm e}^{-\frac {x}{2}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3145

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3146

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3147

\[ {}y^{\prime \prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3148

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3149

\[ {}y^{\prime \prime }+y = 4 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3150

\[ {}y^{\prime \prime }+4 y = 2 x -2 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3151

\[ {}y^{\prime \prime }-y = 3 x +5 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3152

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{x}+\sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3155

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3156

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3160

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3161

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3162

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right ) \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3163

\[ {}y^{\prime \prime }-2 y = {\mathrm e}^{-x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3164

\[ {}y^{\prime \prime }+9 y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3165

\[ {}y^{\prime \prime }+9 y = \csc \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3166

\[ {}y^{\prime \prime }+y = \tan \left (\frac {x}{3}\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3168

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{\frac {x}{2}} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3170

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

3172

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3173

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3174

\[ {}y^{\prime \prime }+3 y = 3 \,{\mathrm e}^{-4 x} \]

[[_2nd_order, _with_linear_symmetries]]

3175

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3176

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3177

\[ {}y^{\prime \prime }+2 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3178

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{3 x}}{2}-\frac {{\mathrm e}^{-3 x}}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3179

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3180

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3184

\[ {}y^{\prime \prime }+y = {\mathrm e}^{3 x} \left (1+\sin \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3185

\[ {}y^{\prime \prime }+2 n^{2} y^{\prime }+n^{4} y = \sin \left (k x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3186

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3187

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3188

\[ {}y^{\prime \prime }+4 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3189

\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3190

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}-8 \]

[[_2nd_order, _with_linear_symmetries]]

3205

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

3206

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3207

\[ {}y^{\prime \prime }-y = \cos \left (x \right ) x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3210

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = x^{2} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3214

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right ) x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3215

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3216

\[ {}y^{\prime \prime }-y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3217

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

3218

\[ {}y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

3219

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3220

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

3221

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

3222

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3223

\[ {}4 x^{2} y^{\prime \prime }-16 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

3224

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

3225

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x -18 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

3226

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = \ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

3227

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

3228

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 1-x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3230

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _with_linear_symmetries]]

3231

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3232

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +3 y = \left (x -1\right ) \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3244

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

[[_2nd_order, _quadrature]]

3245

\[ {}y^{\prime \prime } = k^{2} y \]

[[_2nd_order, _missing_x]]

3246

\[ {}x^{\prime \prime }+k^{2} x = 0 \]

[[_2nd_order, _missing_x]]

3249

\[ {}x y^{\prime \prime } = x^{2}+1 \]

[[_2nd_order, _quadrature]]

3250

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

3251

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _missing_y]]

3253

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

[[_2nd_order, _missing_y]]

3254

\[ {}x^{\prime \prime }+t x^{\prime } = t^{3} \]

[[_2nd_order, _missing_y]]

3255

\[ {}x^{2} y^{\prime \prime } = y^{\prime } x +1 \]

[[_2nd_order, _missing_y]]

3257

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

3266

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

3272

\[ {}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

3282

\[ {}x^{\prime \prime }-k^{2} x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3484

\[ {}x^{\prime \prime }+\omega _{0}^{2} x = a \cos \left (\omega t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3485

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3486

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = {\mathrm e}^{-t} \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3487

\[ {}f^{\prime \prime }+6 f^{\prime }+9 f = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3488

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3489

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3490

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

3493

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

3494

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }+y = x^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3495

\[ {}\left (x -2\right ) y^{\prime \prime }+3 y^{\prime }+\frac {4 y}{x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3496

\[ {}y^{\prime \prime }-y = x^{n} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3497

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3500

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+6\right ) y = {\mathrm e}^{-x^{2}} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3558

\[ {}y^{\prime \prime }-25 y = 0 \]

[[_2nd_order, _missing_x]]

3559

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

3560

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

3563

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

3564

\[ {}y^{\prime \prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

3565

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3566

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3567

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]

[[_Emden, _Fowler]]

3568

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 9 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3569

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3570

\[ {}y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y = 0 \]

[[_2nd_order, _missing_x]]

3571

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

3572

\[ {}y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = 0 \]

[[_2nd_order, _missing_x]]

3573

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

3574

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

3575

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3576

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

3584

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

3585

\[ {}y^{\prime \prime } = x^{n} \]

[[_2nd_order, _quadrature]]

3587

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

3589

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

3590

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

3591

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -8 y = 0 \]

[[_Emden, _Fowler]]

3592

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3631

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 9 x \]

[[_2nd_order, _missing_y]]

3696

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

3697

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

3698

\[ {}y^{\prime \prime }-36 y = 0 \]

[[_2nd_order, _missing_x]]

3699

\[ {}y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

3707

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3708

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3711

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 18 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

3712

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 4 x^{2}+5 \]

[[_2nd_order, _with_linear_symmetries]]

3716

\[ {}y^{\prime \prime }+y = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3717

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3718

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3719

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3720

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3724

\[ {}y^{\prime \prime }+9 y = 5 \cos \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3725

\[ {}y^{\prime \prime }-y = 9 x \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3726

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -10 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3727

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 4 \cos \left (x \right )-2 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3728

\[ {}y^{\prime \prime }+\omega ^{2} y = \frac {F_{0} \cos \left (\omega t \right )}{m} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3729

\[ {}y^{\prime \prime }-4 y^{\prime }+6 y = 7 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3732

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3733

\[ {}y^{\prime \prime }+6 y = \sin \left (x \right )^{2} \cos \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3734

\[ {}y^{\prime \prime }-16 y = 20 \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3735

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 50 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3736

\[ {}y^{\prime \prime }-y = 10 \,{\mathrm e}^{2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3737

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 169 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3738

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 40 \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3739

\[ {}y^{\prime \prime }+y = 3 \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3740

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \,{\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3741

\[ {}y^{\prime \prime }-4 y = 100 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3742

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3743

\[ {}y^{\prime \prime }-2 y^{\prime }+10 y = 24 \,{\mathrm e}^{x} \cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3744

\[ {}y^{\prime \prime }+16 y = 34 \,{\mathrm e}^{x}+16 \cos \left (4 x \right )-8 \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3745

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 4 \,{\mathrm e}^{3 x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3746

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3747

\[ {}y^{\prime \prime }+9 y = 18 \sec \left (3 x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3748

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3749

\[ {}y^{\prime \prime }-4 y = \frac {8}{{\mathrm e}^{2 x}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3750

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3751

\[ {}y^{\prime \prime }+9 y = \frac {36}{4-\cos \left (3 x \right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3752

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = \frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3753

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 4 \,{\mathrm e}^{3 x} \sec \left (2 x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3754

\[ {}y^{\prime \prime }+y = \sec \left (x \right )+4 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3755

\[ {}y^{\prime \prime }+y = \csc \left (x \right )+2 x^{2}+5 x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3756

\[ {}y^{\prime \prime }-y = 2 \tanh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3757

\[ {}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \frac {{\mathrm e}^{m x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3758

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3759

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{\sqrt {-x^{2}+4}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3760

\[ {}y^{\prime \prime }+2 y^{\prime }+17 y = \frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3761

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {4 \,{\mathrm e}^{-2 x}}{x^{2}+1}+2 x^{2}-1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3762

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 15 \,{\mathrm e}^{-2 x} \ln \left (x \right )+25 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3767

\[ {}y^{\prime \prime }-9 y = F \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3768

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = F \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3769

\[ {}y^{\prime \prime }+y^{\prime }-2 y = F \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3770

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = F \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3771

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3772

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3773

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3774

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3775

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 9 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

3776

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 8 x \ln \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3777

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3778

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +6 y = 4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3779

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = \frac {x^{2}}{\ln \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3780

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+m^{2} y = x^{m} \ln \left (x \right )^{k} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3781

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

3782

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +25 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3797

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

3798

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3802

\[ {}y^{\prime \prime }-4 y = 5 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3803

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3804

\[ {}y^{\prime \prime }-y = 4 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3806

\[ {}y^{\prime \prime }+4 y = \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3807

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 5 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3808

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3809

\[ {}y^{\prime \prime }+y = 4 \cos \left (2 x \right )+3 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4118

\[ {}y^{\prime \prime }+8 y^{\prime }+15 y = 0 \]

[[_2nd_order, _missing_x]]

4119

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

[[_2nd_order, _missing_x]]

4120

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

4121

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

4122

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

4123

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

4124

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

4125

\[ {}y^{\prime \prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

4126

\[ {}4 y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

4127

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

4128

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

4129

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 1 \]

[[_2nd_order, _missing_x]]

4130

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

4131

\[ {}y^{\prime \prime }+y = x^{3}+x \]

[[_2nd_order, _linear, _nonhomogeneous]]

4132

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

4133

\[ {}y^{\prime \prime }+2 y = x +{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

4134

\[ {}y^{\prime \prime }+2 y = {\mathrm e}^{x}+2 \]

[[_2nd_order, _with_linear_symmetries]]

4135

\[ {}y^{\prime \prime }-y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

4136

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4137

\[ {}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4138

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = x^{3}+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4139

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4140

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}+2 \]

[[_2nd_order, _with_linear_symmetries]]

4141

\[ {}y^{\prime \prime }+2 n y^{\prime }+n^{2} y = A \cos \left (x p \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4152

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4153

\[ {}y^{\prime \prime }+2 y^{\prime }-2 y = x^{2}+1 \]

[[_2nd_order, _with_linear_symmetries]]

4154

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{8} = \frac {\sin \left (x \right )}{8}-\frac {\cos \left (x \right )}{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4155

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x}-2 \,{\mathrm e}^{2 x}+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4156

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x}+x \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4157

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4158

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4161

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

4162

\[ {}y^{\prime \prime }+9 y = 8 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4163

\[ {}25 y^{\prime \prime }-30 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

4164

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = \left (4 x^{2}+24 x +18\right ) {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4426

\[ {}x y^{\prime \prime } = y^{\prime }+x \]

[[_2nd_order, _missing_y]]

4456

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4457

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 x} \left (x^{2}-3 \sin \left (x \right ) x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4458

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (x +{\mathrm e}^{x}\right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4459

\[ {}y^{\prime \prime }+4 y = \sinh \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4460

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cosh \left (x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4470

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 36 x \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4474

\[ {}y^{\prime \prime }+3 y^{\prime }+5 y = 5 \,{\mathrm e}^{-x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4476

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4479

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \left (x +1\right ) {\mathrm e}^{x}+2 \,{\mathrm e}^{2 x}+3 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4480

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 4 \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4481

\[ {}y^{\prime \prime }+4 y = 4 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4482

\[ {}y^{\prime \prime }-y = 12 x^{2} {\mathrm e}^{x}+3 \,{\mathrm e}^{2 x}+10 \cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4483

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right )-3 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4484

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (x^{2}+10\right ) \]

[[_2nd_order, _missing_y]]

4485

\[ {}y^{\prime \prime }-4 y = 96 x^{2} {\mathrm e}^{2 x}+4 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4486

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (x \right )+10 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4487

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 4 x -2+2 \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4488

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 x \,{\mathrm e}^{2 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4497

\[ {}y^{\prime \prime }-y = \frac {1}{x}-\frac {2}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4498

\[ {}y^{\prime \prime }-y = \frac {1}{\sinh \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4499

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4500

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4501

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4502

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4503

\[ {}y^{\prime \prime }-y = \frac {1}{\sqrt {1-{\mathrm e}^{2 x}}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4504

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4505

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 15 \,{\mathrm e}^{-x} \sqrt {x +1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4506

\[ {}y^{\prime \prime }+4 y = 2 \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4507

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{2 x}}{\left (1+{\mathrm e}^{x}\right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4508

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _missing_y]]

4509

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

4510

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y = \frac {5 \ln \left (x \right )}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4512

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

5916

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

5917

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

5918

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

5919

\[ {}6 y^{\prime \prime }-11 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

5920

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

5925

\[ {}y^{\prime \prime }-2 k y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

5926

\[ {}y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

5928

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

5931

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

5937

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

5938

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

5940

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

5945

\[ {}y^{\prime \prime } = 0 \]
i.c.

[[_2nd_order, _quadrature]]

5946

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

5947

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

5948

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

5950

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \]

[[_2nd_order, _missing_x]]

5951

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

5952

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{i x} \]

[[_2nd_order, _with_linear_symmetries]]

5953

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5954

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5955

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5956

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

5957

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5958

\[ {}y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

5959

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+2 x \]

[[_2nd_order, _missing_y]]

5960

\[ {}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

5961

\[ {}y^{\prime \prime }+y = 4 \sin \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

5962

\[ {}y^{\prime \prime }+4 y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5963

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5964

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x}+x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5965

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5966

\[ {}y^{\prime \prime }+y^{\prime }-6 y = x +{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

5967

\[ {}y^{\prime \prime }+y = \sin \left (x \right )+{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5968

\[ {}y^{\prime \prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5969

\[ {}y^{\prime \prime }+y = \sin \left (2 x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5970

\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

5971

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5972

\[ {}y^{\prime \prime }+9 y = 8 \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5973

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{x} \left (2 x -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5974

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

5975

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5976

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5977

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5978

\[ {}y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5979

\[ {}y^{\prime \prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5980

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

5981

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5982

\[ {}y^{\prime \prime }+y = 4 \sin \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

5983

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5984

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5985

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5986

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5987

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5988

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5989

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5990

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

5991

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5992

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

5993

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5994

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5998

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

5999

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

6009

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _missing_y]]

6014

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]
i.c.

[[_2nd_order, _missing_y]]

6015

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

6026

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6077

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6078

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6079

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6080

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6081

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6082

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

6083

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

6084

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6085

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6086

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6087

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

6091

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

6135

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

6136

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

6137

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

6138

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

6139

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

6140

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

6141

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

6142

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

6143

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

6144

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

6145

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

[[_2nd_order, _missing_x]]

6146

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

[[_2nd_order, _missing_x]]

6151

\[ {}y^{\prime \prime }-4 y^{\prime } = 10 \]

[[_2nd_order, _missing_x]]

6152

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 16 \]

[[_2nd_order, _missing_x]]

6153

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6154

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 24 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6155

\[ {}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

6156

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 12 \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

6157

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6158

\[ {}y^{\prime \prime }-16 y = 40 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

6159

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

6160

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6161

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 100 \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6162

\[ {}y^{\prime \prime }+4 y^{\prime }+12 y = 80 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6163

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6164

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 120 \sin \left (5 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6165

\[ {}5 y^{\prime \prime }+12 y^{\prime }+20 y = 120 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6166

\[ {}y^{\prime \prime }+9 y = 30 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6167

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6168

\[ {}y^{\prime \prime }+2 y^{\prime }+17 y = 60 \,{\mathrm e}^{-4 x} \sin \left (5 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6169

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 40 \,{\mathrm e}^{-\frac {3 x}{2}} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6170

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = 30 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {5 x}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6171

\[ {}5 y^{\prime \prime }+6 y^{\prime }+2 y = x^{2}+6 x \]

[[_2nd_order, _with_linear_symmetries]]

6172

\[ {}2 y^{\prime \prime }+y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

6173

\[ {}y^{\prime \prime }+y = 2 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6174

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 12 x \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6175

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 16 x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6176

\[ {}y^{\prime \prime }+y = 8 \sin \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

6177

\[ {}y^{\prime \prime }+y = x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6178

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x}+6 x -5 \]

[[_2nd_order, _with_linear_symmetries]]

6179

\[ {}y^{\prime \prime }-y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6180

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right )+4 \cos \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

6181

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{x}+\left (1-x \right ) \left (-1+{\mathrm e}^{2 x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6182

\[ {}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

6187

\[ {}y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

6192

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y = 0 \]

[[_Emden, _Fowler]]

6193

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6194

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

6195

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler]]

6196

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 8 x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

6197

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x -\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6198

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

6199

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 6 x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6200

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

6201

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

6211

\[ {}r^{\prime \prime }-6 r^{\prime }+9 r = 0 \]

[[_2nd_order, _missing_x]]

6213

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6215

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

6219

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

6220

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 26 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6221

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6222

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 6 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6223

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6227

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6234

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 6 \]
i.c.

[[_2nd_order, _missing_x]]

6243

\[ {}y^{\prime \prime } = -4 y \]

[[_2nd_order, _missing_x]]

6245

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

6247

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

6249

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

6251

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6253

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6255

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6389

\[ {}x^{\prime \prime }-\omega ^{2} x = 0 \]

[[_2nd_order, _missing_x]]

6391

\[ {}x^{\prime \prime }+42 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6394

\[ {}x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x = F \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6395

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6396

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6397

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6398

\[ {}y^{\prime \prime }-y = \cosh \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6408

\[ {}x \left (x +1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6409

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (-2 x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6410

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6411

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6412

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

6413

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

6414

\[ {}x y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6415

\[ {}x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6480

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 8 \]

[[_2nd_order, _missing_x]]

6481

\[ {}y^{\prime \prime }-4 y = 10 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6482

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6483

\[ {}y^{\prime \prime }+25 y = 5 x^{2}+x \]

[[_2nd_order, _with_linear_symmetries]]

6484

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6485

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6486

\[ {}3 y^{\prime \prime }-2 y^{\prime }-y = 2 x -3 \]

[[_2nd_order, _with_linear_symmetries]]

6487

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 8 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

6488

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6489

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 54 x +18 \]

[[_2nd_order, _with_linear_symmetries]]

6490

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 100 \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6491

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6492

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 2 \cosh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6493

\[ {}y^{\prime \prime }-y^{\prime }+10 y = 20-{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6494

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \cos \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6495

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x +{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6496

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

6497

\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6498

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = {\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6499

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 6 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6500

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6501

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 3 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6502

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 50 x \]

[[_2nd_order, _with_linear_symmetries]]

6503

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 85 \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6504

\[ {}y^{\prime \prime } = 3 \sin \left (x \right )-4 y \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6505

\[ {}\frac {x^{\prime \prime }}{2} = -48 x \]
i.c.

[[_2nd_order, _missing_x]]

6506

\[ {}x^{\prime \prime }+5 x^{\prime }+6 x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6507

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

6508

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6509

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6510

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 2 \sin \left (\frac {t}{2}\right )-\cos \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6511

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 64 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

6512

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 50 t^{3}-36 t^{2}-63 t +18 \]

[[_2nd_order, _linear, _nonhomogeneous]]

6514

\[ {}y^{\prime \prime } = 9 x^{2}+2 x -1 \]

[[_2nd_order, _quadrature]]

6515

\[ {}y^{\prime \prime }-5 y = 2 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

6519

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

6520

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6521

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6522

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

6523

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6530

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6531

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6532

\[ {}x^{\prime \prime }+4 x = \sin \left (2 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6533

\[ {}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \left (t \right ) \]

[[_2nd_order, _with_linear_symmetries]]

6536

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{5}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6537

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6538

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6539

\[ {}y^{\prime \prime }-60 y^{\prime }-900 y = 5 \,{\mathrm e}^{10 x} \]

[[_2nd_order, _with_linear_symmetries]]

6540

\[ {}y^{\prime \prime }-7 y^{\prime } = -3 \]

[[_2nd_order, _missing_x]]

6541

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6542

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x = x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

6574

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

6575

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6576

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

6577

\[ {}y^{\prime \prime }-y = 4-x \]

[[_2nd_order, _with_linear_symmetries]]

6578

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

6579

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \,{\mathrm e}^{x} \left (1-x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6692

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

6694

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

6695

\[ {}y^{\prime \prime }+9 y = \cos \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

6696

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6698

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6702

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

[[_2nd_order, _missing_x]]

6704

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

6706

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

6707

\[ {}y^{\prime \prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

6712

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 1 \]

[[_2nd_order, _missing_x]]

6713

\[ {}y^{\prime \prime }-4 y^{\prime } = 5 \]

[[_2nd_order, _missing_x]]

6717

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6718

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

6719

\[ {}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6720

\[ {}y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6721

\[ {}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6722

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6723

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6724

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6725

\[ {}y^{\prime \prime }+4 y = 4 \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6726

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = \frac {1}{1+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6727

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-x} \sin \left ({\mathrm e}^{-x}\right )+\cos \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6728

\[ {}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6729

\[ {}y^{\prime \prime }+2 y = {\mathrm e}^{x}+2 \]

[[_2nd_order, _with_linear_symmetries]]

6730

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6731

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x^{2}+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6732

\[ {}y^{\prime \prime }-9 y = x +{\mathrm e}^{2 x}-\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6734

\[ {}y^{\prime \prime }+y = -2 \sin \left (x \right )+4 \cos \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

6736

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5 \]

[[_2nd_order, _linear, _nonhomogeneous]]

6737

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

6738

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{x}+x \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6741

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6742

\[ {}y^{\prime \prime }+5 y = \cos \left (\sqrt {5}\, x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6744

\[ {}y^{\prime \prime }-y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

6745

\[ {}y^{\prime \prime }+2 y = x^{3}+x^{2}+{\mathrm e}^{-2 x}+\cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6746

\[ {}y^{\prime \prime }-2 y^{\prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6747

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 x}}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6748

\[ {}y^{\prime \prime }-y = x \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6749

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{-2 x} \sec \left (x \right )^{2} \left (2 \tan \left (x \right )+1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6750

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x +x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6751

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

6754

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = \ln \left (x +1\right )^{2}+x -1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6755

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y = 6 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6756

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

6757

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 2 \]

[[_2nd_order, _with_linear_symmetries]]

6758

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 8 \]

[[_2nd_order, _with_linear_symmetries]]

6759

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+\left (x +2\right ) y = \left (x^{2}+2 x +1\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6760

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6761

\[ {}x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+\left (x^{2}+3 x +3\right ) y = \left (-x^{2}+6\right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6762

\[ {}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6763

\[ {}x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = \left (x^{2}-x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6764

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6765

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y = \frac {x +1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6766

\[ {}x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y = \frac {1}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6768

\[ {}x y^{\prime \prime }-3 y^{\prime }+\frac {3 y}{x} = x +2 \]

[[_2nd_order, _with_linear_symmetries]]

6769

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y = \left (2+3 x \right ) {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6770

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (9 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6771

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y x = 4 \]

[[_2nd_order, _linear, _nonhomogeneous]]

6772

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = \frac {-x^{2}+1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

6774

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {2}{x^{3}} \]

[[_2nd_order, _missing_y]]

6775

\[ {}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

6889

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

6890

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6899

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

6909

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

6910

\[ {}2 y^{\prime \prime }+7 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

6911

\[ {}x y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

6912

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

6913

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 0 \]

[[_Emden, _Fowler]]

6918

\[ {}y^{\prime \prime }+4 y^{\prime }+6 y = 10 \]

[[_2nd_order, _missing_x]]

6926

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = 5 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6928

\[ {}y^{\prime \prime } = f \left (x \right ) \]

[[_2nd_order, _quadrature]]

6940

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6941

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6942

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6943

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6944

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6945

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6946

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6947

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6973

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6974

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6975

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6976

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7256

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

7257

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7258

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7261

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7262

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7265

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

7267

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7268

\[ {}y^{\prime \prime }+y^{\prime } x +y = 2 x \,{\mathrm e}^{x}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7269

\[ {}x y^{\prime \prime }+y^{\prime } x -y = x^{2}+2 x \]

[[_2nd_order, _with_linear_symmetries]]

7270

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2}+2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7271

\[ {}x^{3} y^{\prime \prime }+y^{\prime } x -y = \cos \left (\frac {1}{x}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

7272

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7273

\[ {}2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

7276

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7277

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7295

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

7296

\[ {}s^{\prime \prime }+2 s^{\prime }+s = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7297

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

7298

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 1+3 x \]

[[_2nd_order, _with_linear_symmetries]]

7299

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7300

\[ {}y^{\prime \prime }+y = 4 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7301

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7302

\[ {}p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u = f \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7303

\[ {}\sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0 \]

[_Lienard]

7305

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7313

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7314

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

7315

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

7316

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7318

\[ {}y^{\prime \prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

7319

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7320

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (1+3 x \right )^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7323

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7324

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7335

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7359

\[ {}y^{\prime \prime } = x +2 \]

[[_2nd_order, _quadrature]]

7363

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

7364

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7365

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

7367

\[ {}y^{\prime \prime } = 1+3 x \]

[[_2nd_order, _quadrature]]

7390

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

7391

\[ {}3 y^{\prime \prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

7392

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

7393

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

7394

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7395

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

7396

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]

[[_2nd_order, _missing_x]]

7397

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7398

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7399

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7400

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7401

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7402

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7403

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7404

\[ {}y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7405

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7406

\[ {}y^{\prime \prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7407

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7408

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7409

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7410

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

7411

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x}+2 x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7412

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7413

\[ {}y^{\prime \prime }+y = 2 \sin \left (2 x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7414

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7415

\[ {}4 y^{\prime \prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

7416

\[ {}6 y^{\prime \prime }+5 y^{\prime }-6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

7417

\[ {}y^{\prime \prime }+\omega ^{2} y = A \cos \left (\omega x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7428

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7429

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

7435

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

7442

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = {\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7443

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7444

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7445

\[ {}y^{\prime \prime }-4 y = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7446

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7447

\[ {}y^{\prime \prime }+9 y = x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7448

\[ {}y^{\prime \prime }+y = x \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7449

\[ {}y^{\prime \prime }+i y^{\prime }+2 y = 2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7452

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

7453

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

7454

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7464

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7475

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7477

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7478

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

7479

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7480

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

7482

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

7483

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

7484

\[ {}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0 \]

[[_Emden, _Fowler]]

7485

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 \pi y = x \]

[[_2nd_order, _with_linear_symmetries]]

7537

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

7540

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

7542

\[ {}x y^{\prime \prime }-2 y^{\prime } = x^{3} \]

[[_2nd_order, _missing_y]]

7555

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7556

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

7582

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7685

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

7689

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

7714

\[ {}x y^{\prime \prime }-3 y^{\prime } = 5 x \]

[[_2nd_order, _missing_y]]

7715

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

7716

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7717

\[ {}y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

7718

\[ {}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7719

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7720

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

7721

\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

7722

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

7723

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7724

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

7725

\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

7726

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

7727

\[ {}y^{\prime \prime } = 4 y \]

[[_2nd_order, _missing_x]]

7728

\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

[[_2nd_order, _missing_x]]

7729

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

7730

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

7731

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

7732

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

7733

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7734

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7735

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7736

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7737

\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7738

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7739

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

7740

\[ {}2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

7741

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

7742

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

[[_Emden, _Fowler]]

7743

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7744

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7745

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

7746

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7747

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7748

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

7749

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7750

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

[[_2nd_order, _with_linear_symmetries]]

7751

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

[[_2nd_order, _with_linear_symmetries]]

7752

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

7753

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7754

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7755

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

[[_2nd_order, _missing_y]]

7756

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

7757

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7758

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

[[_2nd_order, _missing_y]]

7759

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

[[_2nd_order, _linear, _nonhomogeneous]]

7760

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7761

\[ {}y^{\prime \prime }-3 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

7763

\[ {}y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7764

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7765

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7766

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7767

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

7768

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7769

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7770

\[ {}y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7771

\[ {}y^{\prime \prime }+y = \cot \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7772

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

7773

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7774

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7775

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7776

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

7777

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

7778

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = \left (x^{2}-1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

7779

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (x +1\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7780

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

7781

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

7782

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

7817

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7818

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7819

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

7820

\[ {}y^{\prime \prime }-y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

7821

\[ {}y^{\prime \prime }-2 y^{\prime }-5 y = x \]

[[_2nd_order, _with_linear_symmetries]]

7822

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

7823

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7824

\[ {}y^{\prime \prime }-y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

7825

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7826

\[ {}y^{\prime \prime }-y^{\prime }+4 y = x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7827

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7828

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7829

\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7830

\[ {}y^{\prime \prime }-y = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7831

\[ {}y^{\prime \prime } = \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

7832

\[ {}y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

7833

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 x -1 \]

[[_2nd_order, _with_linear_symmetries]]

7834

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

7835

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7836

\[ {}y^{\prime \prime }+2 y^{\prime }-y = x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7837

\[ {}y^{\prime \prime }+9 y = \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7838

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7839

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {2}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7840

\[ {}y^{\prime \prime }+4 y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7845

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7846

\[ {}y^{\prime \prime }+9 y = -3 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7848

\[ {}y^{\prime \prime } = -3 y \]
i.c.

[[_2nd_order, _missing_x]]

7997

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7999

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

8001

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8003

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8067

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8072

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8079

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8081

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

[[_Emden, _Fowler]]

8085

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

8086

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8087

\[ {}16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8088

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8140

\[ {}t y^{\prime \prime }-y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

8141

\[ {}2 y^{\prime \prime }+y^{\prime } t -2 y = 10 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8274

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]
i.c.

[[_2nd_order, _missing_y]]

8275

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8278

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

8287

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

[[_2nd_order, _missing_y]]

8307

\[ {}y^{\prime \prime }+y = -\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8308

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

8309

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

8310

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2}+2 x +1 \]

[[_2nd_order, _with_linear_symmetries]]

8384

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

8385

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8386

\[ {}9 x^{2} y^{\prime \prime }+2 y = 0 \]

[[_Emden, _Fowler]]

8387

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8388

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

8389

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8390

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8391

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

8392

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

8483

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

8484

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8485

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8486

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8530

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

8531

\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8532

\[ {}y^{\prime \prime }+y^{\prime }+4 y = 1 \]

[[_2nd_order, _missing_x]]

8533

\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8537

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

8538

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 y^{\prime } t = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8539

\[ {}t^{2} y^{\prime \prime }-3 y^{\prime } t +5 y = 0 \]

[[_Emden, _Fowler]]

8540

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8541

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8543

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8544

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8545

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

8546

\[ {}y^{\prime \prime } = f \left (t \right ) \]

[[_2nd_order, _quadrature]]

8547

\[ {}y^{\prime \prime } = k \]

[[_2nd_order, _quadrature]]

8550

\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

[[_2nd_order, _quadrature]]

8551

\[ {}y y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8555

\[ {}y^{2} y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8560

\[ {}a y y^{\prime \prime }+b y = 0 \]

[[_2nd_order, _quadrature]]

8573

\[ {}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8578

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8579

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8580

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8583

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8584

\[ {}y^{\prime \prime }-y^{\prime } x -y x -2 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8585

\[ {}y^{\prime \prime }-y^{\prime } x -y x -3 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8586

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x^{2}-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8587

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8588

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x^{4}-6 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8589

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x^{5}+24 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8590

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8591

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8592

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8626

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8631

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8637

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

[[_2nd_order, _missing_x]]

8639

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8640

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8641

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8642

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8643

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8644

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8645

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8646

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8647

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8648

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8649

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8651

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

8652

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

[[_2nd_order, _with_linear_symmetries]]

8653

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

8666

\[ {}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (\ln \left (x \right )+1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8735

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

8738

\[ {}y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8741

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8742

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8743

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8744

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8745

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8755

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (x +2\right ) {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8759

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8850

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8853

\[ {}a y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8856

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

8857

\[ {}{y^{\prime \prime }}^{2} = 1 \]

[[_2nd_order, _quadrature]]

8858

\[ {}y^{\prime \prime } = x \]

[[_2nd_order, _quadrature]]

8861

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8864

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

8867

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

8870

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

8873

\[ {}y^{\prime \prime }+y^{\prime }+y = 1 \]

[[_2nd_order, _missing_x]]

8874

\[ {}y^{\prime \prime }+y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

8875

\[ {}y^{\prime \prime }+y^{\prime }+y = x +1 \]

[[_2nd_order, _with_linear_symmetries]]

8876

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1 \]

[[_2nd_order, _with_linear_symmetries]]

8877

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8878

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8879

\[ {}y^{\prime \prime }+y^{\prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8880

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

8881

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

8882

\[ {}y^{\prime \prime }+y^{\prime } = x +1 \]

[[_2nd_order, _missing_y]]

8883

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

8884

\[ {}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

8885

\[ {}y^{\prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

8886

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

8887

\[ {}y^{\prime \prime }+y = 1 \]

[[_2nd_order, _missing_x]]

8888

\[ {}y^{\prime \prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

8889

\[ {}y^{\prime \prime }+y = x +1 \]

[[_2nd_order, _with_linear_symmetries]]

8890

\[ {}y^{\prime \prime }+y = x^{2}+x +1 \]

[[_2nd_order, _with_linear_symmetries]]

8891

\[ {}y^{\prime \prime }+y = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8892

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8893

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8915

\[ {}y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8916

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

8917

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8918

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -c^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8920

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{3}-x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

8924

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8925

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8928

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+y x = x^{m +1} \]

[[_2nd_order, _with_linear_symmetries]]

8929

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8931

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8932

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

8933

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8934

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x^{2}} \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8935

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8936

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8938

\[ {}x y^{\prime \prime }+2 y^{\prime }-y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8939

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

8947

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8951

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

8952

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

8953

\[ {}\left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8954

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

8955

\[ {}3 y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8956

\[ {}5 y^{\prime \prime }-2 y^{\prime } x +10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8957

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8958

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8959

\[ {}y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8960

\[ {}\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8961

\[ {}\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8962

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8963

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8964

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = 0 \]

[_Laguerre]

8965

\[ {}\left (-t +1\right ) y^{\prime \prime }+y^{\prime } t -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8966

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8967

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = 0 \]

[_Laguerre]

8968

\[ {}\left (-t +1\right ) y^{\prime \prime }+y^{\prime } t -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8969

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8970

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8971

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8972

\[ {}2 y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8973

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8974

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8975

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8976

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8977

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8978

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8979

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8980

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8981

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8982

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8983

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8984

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8985

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8986

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8987

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8988

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8989

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8990

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8991

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8992

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8993

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8994

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }-\left (6 x -8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8995

\[ {}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8996

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (2-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8997

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-\left (4+6 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8998

\[ {}x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+4\right ) y^{\prime }+2 \left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8999

\[ {}x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9000

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9001

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9002

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x +20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9003

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x -12 y = 0 \]

[_Gegenbauer]

9004

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9005

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x -4 y = 0 \]

[_Gegenbauer]

9006

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-10 y^{\prime } x +28 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9007

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9008

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }-9 y^{\prime } x -6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9009

\[ {}\left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (x -2\right ) y^{\prime }+36 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9010

\[ {}y^{\prime \prime }+\left (x -3\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9011

\[ {}\left (x^{2}-8 x +14\right ) y^{\prime \prime }-8 \left (x -4\right ) y^{\prime }+20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9012

\[ {}\left (2 x^{2}+4 x +5\right ) y^{\prime \prime }-20 \left (x +1\right ) y^{\prime }+60 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9013

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+7 x^{2} y^{\prime }+9 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9014

\[ {}\left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9015

\[ {}y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9016

\[ {}\left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9017

\[ {}y^{\prime \prime }+x^{5} y^{\prime }+6 x^{4} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9018

\[ {}\left (1+3 x \right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9019

\[ {}\left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9020

\[ {}\left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9021

\[ {}\left (x +4\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9022

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+10 \left (x +1\right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9023

\[ {}x^{2} y^{\prime \prime }-\left (6-7 x \right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9024

\[ {}\left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (1+7 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9025

\[ {}\left (x +3\right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-\left (2-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9026

\[ {}y^{\prime \prime }+3 y^{\prime } x +\left (2 x^{2}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9027

\[ {}\left (2+4 x \right ) y^{\prime \prime }-4 y^{\prime }-\left (6+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9028

\[ {}y^{\prime \prime }-3 y^{\prime } x +\left (2 x^{2}+5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9029

\[ {}2 y^{\prime \prime }+5 y^{\prime } x +\left (2 x^{2}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9030

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9031

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9032

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9033

\[ {}3 x^{2} y^{\prime \prime }+2 x \left (-2 x^{2}+x +1\right ) y^{\prime }+\left (-8 x^{2}+2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9034

\[ {}12 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+35 x +11\right ) y^{\prime }-\left (-5 x^{2}-10 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9035

\[ {}x^{2} \left (10 x^{2}+x +5\right ) y^{\prime \prime }+x \left (48 x^{2}+3 x +4\right ) y^{\prime }+\left (36 x^{2}+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9036

\[ {}18 x^{2} \left (x +1\right ) y^{\prime \prime }+3 x \left (x^{2}+11 x +5\right ) y^{\prime }-\left (-5 x^{2}-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9037

\[ {}2 x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9038

\[ {}2 x^{2} y^{\prime \prime }+x \left (x +5\right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9039

\[ {}3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9040

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9041

\[ {}3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (1+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9042

\[ {}2 x^{2} \left (x +3\right ) y^{\prime \prime }+x \left (1+5 x \right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9043

\[ {}x^{2} \left (x +4\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9044

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9045

\[ {}6 x^{2} y^{\prime \prime }+x \left (10-x \right ) y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9046

\[ {}x^{2} \left (4 x +3\right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }-\left (4 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9047

\[ {}2 x^{2} \left (2+3 x \right ) y^{\prime \prime }+x \left (4+11 x \right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9048

\[ {}x^{2} \left (x +2\right ) y^{\prime \prime }+5 x \left (1-x \right ) y^{\prime }-\left (2-8 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9049

\[ {}8 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-13 x^{2}+1\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9050

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-2 x \left (-x^{2}+2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9051

\[ {}x \left (x^{2}+3\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-8 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

9052

\[ {}4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+x \left (-19 x^{2}+7\right ) y^{\prime }-\left (14 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9053

\[ {}3 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+x \left (-11 x^{2}+1\right ) y^{\prime }+\left (-5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9054

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }-x \left (-7 x^{2}+12\right ) y^{\prime }+\left (3 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9055

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (7 x^{2}+4\right ) y^{\prime }-\left (-3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9056

\[ {}2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9057

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (7 x^{2}+4\right ) y^{\prime }+8 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

9058

\[ {}2 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (8 x^{2}+3\right ) y^{\prime }-\left (-4 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9059

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (x^{2}+3\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9060

\[ {}6 x^{2} y^{\prime \prime }+x \left (6 x^{2}+1\right ) y^{\prime }+\left (9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9061

\[ {}9 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+3\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9062

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9063

\[ {}8 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+2 x \left (34 x^{2}+5\right ) y^{\prime }-\left (-30 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9064

\[ {}2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9065

\[ {}6 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (50 x^{2}+1\right ) y^{\prime }+\left (30 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9066

\[ {}28 x^{2} \left (1-3 x \right ) y^{\prime \prime }-7 x \left (5+9 x \right ) y^{\prime }+7 \left (2+9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9067

\[ {}8 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+2 x \left (-21 x^{2}+10\right ) y^{\prime }-\left (35 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9068

\[ {}4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }-4 x \left (-3 x^{2}-3 x +1\right ) y^{\prime }+3 \left (x^{2}-x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9069

\[ {}3 x^{2} \left (x +1\right )^{2} y^{\prime \prime }-x \left (-11 x^{2}-10 x +1\right ) y^{\prime }+\left (5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9070

\[ {}4 x^{2} \left (x^{2}+2 x +3\right ) y^{\prime \prime }-x \left (-15 x^{2}-14 x +3\right ) y^{\prime }+\left (7 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9071

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9072

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9073

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-2 x \left (2 x^{2}+1\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9074

\[ {}x^{2} y^{\prime \prime }-x \left (5-x \right ) y^{\prime }+\left (9-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9075

\[ {}4 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+12 x^{2} \left (x +1\right ) y^{\prime }+\left (3 x^{2}+3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9076

\[ {}x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }-x \left (-2 x^{2}-4 x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9077

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (-2 x^{2}+3 x +5\right ) y^{\prime }+\left (-14 x^{2}+12 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9078

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+14 x +5\right ) y^{\prime }+\left (12 x^{2}+18 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9079

\[ {}16 x^{2} y^{\prime \prime }+4 x \left (2 x^{2}+x +6\right ) y^{\prime }+\left (18 x^{2}+5 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9080

\[ {}9 x^{2} \left (x +1\right ) y^{\prime \prime }+3 x \left (-x^{2}+11 x +5\right ) y^{\prime }+\left (-7 x^{2}+16 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9081

\[ {}36 x^{2} \left (-2 x +1\right ) y^{\prime \prime }+24 x \left (1-9 x \right ) y^{\prime }+\left (1-70 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9082

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (3-x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9083

\[ {}x^{2} \left (-2 x +1\right ) y^{\prime \prime }-x \left (5-4 x \right ) y^{\prime }+\left (9-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9084

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9085

\[ {}2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (6-x \right ) y^{\prime }+\left (8-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9086

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (5+9 x \right ) y^{\prime }+\left (3 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9087

\[ {}x^{2} \left (-2 x +1\right ) y^{\prime \prime }-x \left (5+4 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9088

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (7+x \right ) y^{\prime }+\left (9-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9089

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9090

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-3 x \left (-x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9091

\[ {}4 x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9092

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9093

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+7 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9094

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-4 x^{2}+1\right ) y^{\prime }+\left (2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9095

\[ {}4 x^{2} \left (x^{2}+4\right ) y^{\prime \prime }+3 x \left (3 x^{2}+8\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9096

\[ {}3 x^{2} \left (x^{2}+3\right ) y^{\prime \prime }+x \left (11 x^{2}+3\right ) y^{\prime }+\left (5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9097

\[ {}9 x^{2} y^{\prime \prime }-3 x \left (-2 x^{2}+7\right ) y^{\prime }+\left (2 x^{2}+25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9098

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9099

\[ {}x^{2} \left (-2 x +1\right ) y^{\prime \prime }+3 y^{\prime } x +\left (1+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9100

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9101

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }-x \left (3-5 x \right ) y^{\prime }+\left (4-5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9102

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (9 x^{2}+1\right ) y^{\prime }+\left (25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9103

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (-x^{2}+1\right ) y^{\prime }+\left (7 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9104

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }-8 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

9105

\[ {}4 x^{2} y^{\prime \prime }+2 x \left (-x^{2}+4\right ) y^{\prime }+\left (7 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9106

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+8 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9107

\[ {}9 x^{2} \left (x +3\right ) y^{\prime \prime }+3 x \left (3+7 x \right ) y^{\prime }+\left (4 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9108

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (3 x^{2}+2\right ) y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9109

\[ {}16 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 x \left (9 x^{2}+1\right ) y^{\prime }+\left (49 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9110

\[ {}x^{2} \left (3 x +4\right ) y^{\prime \prime }-x \left (4-3 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9111

\[ {}4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }+8 x^{2} \left (2 x +3\right ) y^{\prime }+\left (9 x^{2}+3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9112

\[ {}x^{2} \left (1-x \right )^{2} y^{\prime \prime }-x \left (-3 x^{2}+2 x +1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9113

\[ {}9 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+7 x +1\right ) y^{\prime }+\left (25 x^{2}+4 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9114

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }-x \left (4-7 x \right ) y^{\prime }-\left (5-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9115

\[ {}x^{2} \left (-2 x +1\right ) y^{\prime \prime }+x \left (8-9 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9116

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (10 x^{2}+3\right ) y^{\prime }-\left (-14 x^{2}+15\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9117

\[ {}x^{2} \left (-2 x^{2}+1\right ) y^{\prime \prime }+x \left (-13 x^{2}+7\right ) y^{\prime }-14 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9118

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }-\left (1+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9119

\[ {}2 x^{2} \left (2+3 x \right ) y^{\prime \prime }+x \left (4+21 x \right ) y^{\prime }-\left (1-9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9120

\[ {}x^{2} y^{\prime \prime }+x \left (x +2\right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9121

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (3+8 x \right ) y^{\prime }-\left (5-49 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9122

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (3+10 x \right ) y^{\prime }+30 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9123

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-3 \left (x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9124

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (9+13 x \right ) y^{\prime }+\left (7+5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9125

\[ {}4 x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (4-x \right ) y^{\prime }-\left (7+5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9126

\[ {}3 x^{2} \left (x +3\right ) y^{\prime \prime }-x \left (15+x \right ) y^{\prime }-20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9127

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (1-10 x \right ) y^{\prime }-\left (9-10 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9128

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+3 x^{2} y^{\prime }-\left (6-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9129

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (3+14 x \right ) y^{\prime }+\left (6+100 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9130

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (6+11 x \right ) y^{\prime }+\left (6+32 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9131

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (1+4 x \right ) y^{\prime }-\left (49+27 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9132

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+7\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9133

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+7\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9134

\[ {}x^{2} y^{\prime \prime }+x \left (2 x^{2}+1\right ) y^{\prime }-\left (-10 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9135

\[ {}x^{2} y^{\prime \prime }+x \left (-2 x^{2}+1\right ) y^{\prime }-4 \left (2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9136

\[ {}x^{2} y^{\prime \prime }+x \left (-3 x^{2}+1\right ) y^{\prime }-4 \left (-3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9137

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (11 x^{2}+5\right ) y^{\prime }+24 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9138

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 y^{\prime } x -\left (-x^{2}+35\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9139

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-x^{2}+5\right ) y^{\prime }-\left (25 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9140

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9141

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (x^{2}+2\right ) y^{\prime }-\left (x^{2}+15\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9142

\[ {}y^{\prime \prime }-\frac {2 \left (1+t \right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9143

\[ {}y^{\prime \prime }-4 y^{\prime } t +\left (4 t^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9144

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y = 0 \]

[_Gegenbauer]

9145

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9146

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +6 y = 0 \]

[_Gegenbauer]

9147

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (1+t \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9148

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9149

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9150

\[ {}y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9151

\[ {}2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \]

[_Laguerre]

9152

\[ {}2 t y^{\prime \prime }+\left (1+t \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9153

\[ {}2 t^{2} y^{\prime \prime }-y^{\prime } t +\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9154

\[ {}2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9155

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9156

\[ {}t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

[_Lienard]

9157

\[ {}t^{2} y^{\prime \prime }+t \left (1+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9158

\[ {}t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

9159

\[ {}t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9160

\[ {}t y^{\prime \prime }+y^{\prime } t +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9161

\[ {}t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9162

\[ {}t^{2} y^{\prime \prime }-t \left (1+t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9163

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9164

\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y = 0 \]

[_Gegenbauer]

9165

\[ {}4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9166

\[ {}f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9167

\[ {}z y^{\prime \prime }-2 y^{\prime }+y z = 0 \]

[_Lienard]

9168

\[ {}z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9169

\[ {}y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[_erf]

9170

\[ {}y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9171

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9172

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }-20 y^{\prime } x -16 y = 0 \]

[_Gegenbauer]

9173

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

9174

\[ {}y^{\prime \prime }+y^{\prime } x +\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9175

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9176

\[ {}4 y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[_Lienard]

9177

\[ {}y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9178

\[ {}4 x y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9179

\[ {}6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9180

\[ {}3 x^{2} y^{\prime \prime }-x \left (8+x \right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9181

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9182

\[ {}4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9183

\[ {}x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9184

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9185

\[ {}x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9186

\[ {}x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9187

\[ {}x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9188

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9189

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9190

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9191

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}+6\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9192

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9193

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9194

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9195

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (2+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9196

\[ {}x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9197

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9198

\[ {}x^{2} y^{\prime \prime }+2 x \left (x +2\right ) y^{\prime }+2 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9199

\[ {}x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9200

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }+\left (4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9201

\[ {}x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9202

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {9}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9203

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

9204

\[ {}2 x y^{\prime \prime }+5 \left (-2 x +1\right ) y^{\prime }-5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9205

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9206

\[ {}x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9207

\[ {}x^{4} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9208

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9209

\[ {}\left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9210

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9211

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9212

\[ {}x^{2} \left (1-4 x \right ) y^{\prime \prime }-\frac {y^{\prime } x}{2}-\frac {3 y x}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9213

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9214

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9215

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9216

\[ {}2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9217

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

[_Jacobi]

9218

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9219

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

[_Jacobi]

9220

\[ {}x \left (1-x \right ) y^{\prime \prime }+\frac {\left (-2 x +1\right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

[_Jacobi]

9221

\[ {}4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9222

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9223

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9224

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9225

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9226

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9227

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

9228

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

9229

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9230

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9231

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9232

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

9233

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

9234

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9235

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9236

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9237

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9238

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9239

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9240

\[ {}\left (2 x -3\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9241

\[ {}y^{\prime \prime }-y^{\prime } x -3 y = 0 \]

[_Hermite]

9242

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9243

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

9244

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9245

\[ {}x \left (x +1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9246

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

9247

\[ {}x y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9248

\[ {}x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9249

\[ {}y^{\prime \prime }-2 y^{\prime } x +x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9250

\[ {}x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9251

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-\left (2 x +1\right ) \left (-y+y^{\prime } x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9252

\[ {}2 \left (2-x \right ) x^{2} y^{\prime \prime }-x \left (4-x \right ) y^{\prime }+\left (3-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9253

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9254

\[ {}x y^{\prime \prime }+\left (4 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9255

\[ {}y^{\prime \prime }-2 y^{\prime } x +8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9256

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

9257

\[ {}x \left (x +2\right ) y^{\prime \prime }+2 \left (x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9258

\[ {}x \left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9259

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9260

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9261

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9262

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9263

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

9264

\[ {}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9265

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

9266

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9267

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9268

\[ {}x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9269

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

9270

\[ {}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

[_Laguerre]

9271

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9272

\[ {}x y^{\prime \prime }+2 y^{\prime }-y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9273

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9274

\[ {}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9275

\[ {}x^{4} y^{\prime \prime }+\lambda y = 0 \]

[[_Emden, _Fowler]]

9276

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9277

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9278

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9279

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

[[_Emden, _Fowler]]

9280

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9281

\[ {}16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9282

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9283

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

9284

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9285

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

9286

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9287

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +30 y = 0 \]

[_Gegenbauer]

9288

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

9289

\[ {}x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9290

\[ {}2 x \left (x -1\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Jacobi]

9291

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9292

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9293

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +\left (4 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9294

\[ {}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9295

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[_Jacobi]

9296

\[ {}4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9297

\[ {}2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9298

\[ {}3 t \left (1+t \right ) y^{\prime \prime }+y^{\prime } t -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9299

\[ {}x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9300

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (x^{2}-1\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9301

\[ {}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9302

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

9303

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

9304

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9305

\[ {}2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9306

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

9307

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9308

\[ {}u^{\prime \prime }+\frac {u}{x^{2}} = 0 \]

[[_Emden, _Fowler]]

9309

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9310

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (1+3 x \right )^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9311

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9312

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9313

\[ {}y^{\prime \prime }+\frac {y}{2 x^{4}} = 0 \]

[[_Emden, _Fowler]]

9314

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9315

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9316

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9317

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9318

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9319

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9320

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9321

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9322

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9323

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9324

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9325

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

9326

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y x = 0 \]

[[_Emden, _Fowler]]

9327

\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9328

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9329

\[ {}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9330

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9331

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9332

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9333

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9334

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9335

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9336

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y = 0 \]

[[_Emden, _Fowler]]

9337

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

9338

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9339

\[ {}x^{3} y^{\prime \prime }+y^{\prime }-\frac {y}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9340

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9341

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9342

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

9343

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

9344

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9345

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (x +2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9346

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[_Gegenbauer]

9347

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

9348

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9349

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

9350

\[ {}\left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9351

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

9352

\[ {}3 y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9353

\[ {}5 y^{\prime \prime }-2 y^{\prime } x +10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9354

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9355

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9356

\[ {}y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9357

\[ {}\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9358

\[ {}\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9359

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9360

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9361

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9362

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9363

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9364

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9365

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = 0 \]

[_Laguerre]

9366

\[ {}\left (-t +1\right ) y^{\prime \prime }+y^{\prime } t -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9367

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9368

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = 0 \]

[_Laguerre]

9369

\[ {}\left (-t +1\right ) y^{\prime \prime }+y^{\prime } t -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9370

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9371

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9372

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9373

\[ {}2 y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9374

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9375

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9376

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9377

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9378

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9379

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9380

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9381

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9382

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9383

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9384

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9385

\[ {}x^{2} y^{\prime \prime }+2 x \left (x -1\right ) y^{\prime }+\left (x^{2}-2 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9386

\[ {}x^{2} y^{\prime \prime }-x \left (2 x -1\right ) y^{\prime }+\left (x^{2}-x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9387

\[ {}\left (-2 x +1\right ) y^{\prime \prime }+2 y^{\prime }+\left (2 x -3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9388

\[ {}2 x y^{\prime \prime }+\left (1+4 x \right ) y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9389

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9390

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9391

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9392

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9393

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9394

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9395

\[ {}x y^{\prime \prime }-\left (1+4 x \right ) y^{\prime }+\left (2+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9396

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9397

\[ {}\left (2 x +1\right ) x y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9398

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9399

\[ {}x y^{\prime \prime }-\left (1+4 x \right ) y^{\prime }+\left (2+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9400

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }-\left (6 x -8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9401

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }-\left (x^{2}+2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9402

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9403

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9404

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9405

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9406

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9407

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9408

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9409

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9410

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9411

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9412

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9413

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9414

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9415

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }-\left (6 x -8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9416

\[ {}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9417

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (2-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9418

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-\left (4+6 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9419

\[ {}x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+4\right ) y^{\prime }+2 \left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9420

\[ {}x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9421

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9422

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9423

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x +20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9424

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x -12 y = 0 \]

[_Gegenbauer]

9425

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9426

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x -4 y = 0 \]

[_Gegenbauer]

9427

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-10 y^{\prime } x +28 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9428

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9429

\[ {}\left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (x -2\right ) y^{\prime }+36 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9430

\[ {}y^{\prime \prime }+\left (x -3\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9431

\[ {}\left (x^{2}-8 x +14\right ) y^{\prime \prime }-8 \left (x -4\right ) y^{\prime }+20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9432

\[ {}\left (2 x^{2}+4 x +5\right ) y^{\prime \prime }-20 \left (x +1\right ) y^{\prime }+60 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9433

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+7 x^{2} y^{\prime }+9 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9434

\[ {}\left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9435

\[ {}y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9436

\[ {}\left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9437

\[ {}y^{\prime \prime }+x^{5} y^{\prime }+6 x^{4} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9438

\[ {}\left (1+3 x \right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9439

\[ {}\left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9440

\[ {}\left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9441

\[ {}\left (x +4\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9442

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+10 \left (x +1\right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9443

\[ {}x^{2} y^{\prime \prime }-\left (6-7 x \right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9444

\[ {}\left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (1+7 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9445

\[ {}\left (x +3\right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-\left (2-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9446

\[ {}y^{\prime \prime }+3 y^{\prime } x +\left (2 x^{2}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9447

\[ {}\left (2+4 x \right ) y^{\prime \prime }-4 y^{\prime }-\left (6+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9448

\[ {}y^{\prime \prime }-3 y^{\prime } x +\left (2 x^{2}+5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9449

\[ {}2 y^{\prime \prime }+5 y^{\prime } x +\left (2 x^{2}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9450

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9451

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9452

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9453

\[ {}3 x^{2} y^{\prime \prime }+2 x \left (-2 x^{2}+x +1\right ) y^{\prime }+\left (-8 x^{2}+2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9454

\[ {}12 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+35 x +11\right ) y^{\prime }-\left (-5 x^{2}-10 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9455

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

9456

\[ {}18 x^{2} \left (x +1\right ) y^{\prime \prime }+3 x \left (x^{2}+11 x +5\right ) y^{\prime }-\left (-5 x^{2}-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9457

\[ {}2 x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9458

\[ {}2 x^{2} y^{\prime \prime }+x \left (x +5\right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9459

\[ {}3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9460

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9461

\[ {}3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (1+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9462

\[ {}2 x^{2} \left (x +3\right ) y^{\prime \prime }+x \left (1+5 x \right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9463

\[ {}x^{2} \left (x +4\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9464

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9465

\[ {}6 x^{2} y^{\prime \prime }+x \left (10-x \right ) y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9466

\[ {}x^{2} \left (4 x +3\right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }-\left (4 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9467

\[ {}2 x^{2} \left (2+3 x \right ) y^{\prime \prime }+x \left (4+11 x \right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9468

\[ {}x^{2} \left (x +2\right ) y^{\prime \prime }+5 x \left (1-x \right ) y^{\prime }-\left (2-8 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9469

\[ {}8 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-13 x^{2}+1\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9470

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-2 x \left (-x^{2}+2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9471

\[ {}x \left (x^{2}+3\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-8 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

9472

\[ {}4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+x \left (-19 x^{2}+7\right ) y^{\prime }-\left (14 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9473

\[ {}3 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+x \left (-11 x^{2}+1\right ) y^{\prime }+\left (-5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9474

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }-x \left (-7 x^{2}+12\right ) y^{\prime }+\left (3 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9475

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (7 x^{2}+4\right ) y^{\prime }-\left (-3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9476

\[ {}2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9477

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (7 x^{2}+4\right ) y^{\prime }+8 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

9478

\[ {}2 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (8 x^{2}+3\right ) y^{\prime }-\left (-4 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9479

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (x^{2}+3\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9480

\[ {}6 x^{2} y^{\prime \prime }+x \left (6 x^{2}+1\right ) y^{\prime }+\left (9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9481

\[ {}9 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+3\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9482

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9483

\[ {}8 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+2 x \left (34 x^{2}+5\right ) y^{\prime }-\left (-30 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9484

\[ {}2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9485

\[ {}6 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (50 x^{2}+1\right ) y^{\prime }+\left (30 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9486

\[ {}28 x^{2} \left (1-3 x \right ) y^{\prime \prime }-7 x \left (5+9 x \right ) y^{\prime }+7 \left (2+9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9487

\[ {}8 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+2 x \left (-21 x^{2}+10\right ) y^{\prime }-\left (35 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9488

\[ {}4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }-4 x \left (-3 x^{2}-3 x +1\right ) y^{\prime }+3 \left (x^{2}-x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9489

\[ {}3 x^{2} \left (x +1\right )^{2} y^{\prime \prime }-x \left (-11 x^{2}-10 x +1\right ) y^{\prime }+\left (5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9490

\[ {}4 x^{2} \left (x^{2}+2 x +3\right ) y^{\prime \prime }-x \left (-15 x^{2}-14 x +3\right ) y^{\prime }+\left (7 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9491

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9492

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9493

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-2 x \left (2 x^{2}+1\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9494

\[ {}x^{2} y^{\prime \prime }-x \left (5-x \right ) y^{\prime }+\left (9-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9495

\[ {}4 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+12 x^{2} \left (x +1\right ) y^{\prime }+\left (3 x^{2}+3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9496

\[ {}x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }-x \left (-2 x^{2}-4 x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9497

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (-2 x^{2}+3 x +5\right ) y^{\prime }+\left (-14 x^{2}+12 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9498

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+14 x +5\right ) y^{\prime }+\left (12 x^{2}+18 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9499

\[ {}16 x^{2} y^{\prime \prime }+4 x \left (2 x^{2}+x +6\right ) y^{\prime }+\left (18 x^{2}+5 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9500

\[ {}9 x^{2} \left (x +1\right ) y^{\prime \prime }+3 x \left (-x^{2}+11 x +5\right ) y^{\prime }+\left (-7 x^{2}+16 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9501

\[ {}36 x^{2} \left (-2 x +1\right ) y^{\prime \prime }+24 x \left (1-9 x \right ) y^{\prime }+\left (1-70 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9502

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (3-x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9503

\[ {}x^{2} \left (-2 x +1\right ) y^{\prime \prime }-x \left (5-4 x \right ) y^{\prime }+\left (9-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9504

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9505

\[ {}2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (6-x \right ) y^{\prime }+\left (8-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9506

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (5+9 x \right ) y^{\prime }+\left (3 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9507

\[ {}x^{2} \left (-2 x +1\right ) y^{\prime \prime }-x \left (5+4 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9508

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (7+x \right ) y^{\prime }+\left (9-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9509

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9510

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-3 x \left (-x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9511

\[ {}4 x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9512

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9513

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+7 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9514

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-4 x^{2}+1\right ) y^{\prime }+\left (2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9515

\[ {}4 x^{2} \left (x^{2}+4\right ) y^{\prime \prime }+3 x \left (3 x^{2}+8\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9516

\[ {}3 x^{2} \left (x^{2}+3\right ) y^{\prime \prime }+x \left (11 x^{2}+3\right ) y^{\prime }+\left (5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9517

\[ {}9 x^{2} y^{\prime \prime }-3 x \left (-2 x^{2}+7\right ) y^{\prime }+\left (2 x^{2}+25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9518

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9519

\[ {}x^{2} \left (-2 x +1\right ) y^{\prime \prime }+3 y^{\prime } x +\left (1+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9520

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9521

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }-x \left (3-5 x \right ) y^{\prime }+\left (4-5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9522

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (9 x^{2}+1\right ) y^{\prime }+\left (25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9523

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (-x^{2}+1\right ) y^{\prime }+\left (7 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9524

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }-8 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

9525

\[ {}4 x^{2} y^{\prime \prime }+2 x \left (-x^{2}+4\right ) y^{\prime }+\left (7 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9526

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+8 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9527

\[ {}9 x^{2} \left (x +3\right ) y^{\prime \prime }+3 x \left (3+7 x \right ) y^{\prime }+\left (4 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9528

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (3 x^{2}+2\right ) y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9529

\[ {}16 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 x \left (9 x^{2}+1\right ) y^{\prime }+\left (49 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9530

\[ {}x^{2} \left (3 x +4\right ) y^{\prime \prime }-x \left (4-3 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9531

\[ {}4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }+8 x^{2} \left (2 x +3\right ) y^{\prime }+\left (9 x^{2}+3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9532

\[ {}x^{2} \left (1-x \right )^{2} y^{\prime \prime }-x \left (-3 x^{2}+2 x +1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9533

\[ {}9 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+7 x +1\right ) y^{\prime }+\left (25 x^{2}+4 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9534

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }-x \left (4-7 x \right ) y^{\prime }-\left (5-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9535

\[ {}x^{2} \left (-2 x +1\right ) y^{\prime \prime }+x \left (8-9 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9536

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (10 x^{2}+3\right ) y^{\prime }-\left (-14 x^{2}+15\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9537

\[ {}x^{2} \left (-2 x^{2}+1\right ) y^{\prime \prime }+x \left (-13 x^{2}+7\right ) y^{\prime }-14 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9538

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }-\left (1+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9539

\[ {}2 x^{2} \left (2+3 x \right ) y^{\prime \prime }+x \left (4+21 x \right ) y^{\prime }-\left (1-9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9540

\[ {}x^{2} y^{\prime \prime }+x \left (x +2\right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9541

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (3+8 x \right ) y^{\prime }-\left (5-49 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9542

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (3+10 x \right ) y^{\prime }+30 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9543

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-3 \left (x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9544

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (9+13 x \right ) y^{\prime }+\left (7+5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9545

\[ {}4 x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (4-x \right ) y^{\prime }-\left (7+5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9546

\[ {}3 x^{2} \left (x +3\right ) y^{\prime \prime }-x \left (15+x \right ) y^{\prime }-20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9547

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (1-10 x \right ) y^{\prime }-\left (9-10 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9548

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+3 x^{2} y^{\prime }-\left (6-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9549

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (3+14 x \right ) y^{\prime }+\left (6+100 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9550

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (6+11 x \right ) y^{\prime }+\left (6+32 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9551

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (1+4 x \right ) y^{\prime }-\left (49+27 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9552

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+7\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9553

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+7\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9554

\[ {}x^{2} y^{\prime \prime }+x \left (2 x^{2}+1\right ) y^{\prime }-\left (-10 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9555

\[ {}x^{2} y^{\prime \prime }+x \left (-2 x^{2}+1\right ) y^{\prime }-4 \left (2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9556

\[ {}x^{2} y^{\prime \prime }+x \left (-3 x^{2}+1\right ) y^{\prime }-4 \left (-3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9557

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (11 x^{2}+5\right ) y^{\prime }+24 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9558

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 y^{\prime } x -\left (-x^{2}+35\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9559

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-x^{2}+5\right ) y^{\prime }-\left (25 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9560

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9561

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (x^{2}+2\right ) y^{\prime }-\left (x^{2}+15\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9562

\[ {}y^{\prime \prime }-\frac {2 \left (1+t \right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9563

\[ {}y^{\prime \prime }-4 y^{\prime } t +\left (4 t^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9564

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y = 0 \]

[_Gegenbauer]

9565

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9566

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +6 y = 0 \]

[_Gegenbauer]

9567

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (1+t \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9568

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9569

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9570

\[ {}y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9571

\[ {}2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \]

[_Laguerre]

9572

\[ {}2 t y^{\prime \prime }+\left (1+t \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9573

\[ {}2 t^{2} y^{\prime \prime }-y^{\prime } t +\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9574

\[ {}2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9575

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9576

\[ {}t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

[_Lienard]

9577

\[ {}t^{2} y^{\prime \prime }+t \left (1+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9578

\[ {}t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

9579

\[ {}t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9580

\[ {}t y^{\prime \prime }+y^{\prime } t +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9581

\[ {}t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9582

\[ {}t^{2} y^{\prime \prime }-t \left (1+t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9583

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9584

\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+y = 0 \]

[_Gegenbauer]

9585

\[ {}4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9586

\[ {}f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9587

\[ {}z y^{\prime \prime }-2 y^{\prime }+y z = 0 \]

[_Lienard]

9588

\[ {}z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9589

\[ {}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9590

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9591

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

9592

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9593

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9594

\[ {}y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[_erf]

9595

\[ {}y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9596

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9597

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }-20 y^{\prime } x -16 y = 0 \]

[_Gegenbauer]

9598

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

9599

\[ {}y^{\prime \prime }+y^{\prime } x +\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9600

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9601

\[ {}4 y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[_Lienard]

9602

\[ {}y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9603

\[ {}4 x y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9604

\[ {}6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9605

\[ {}3 x^{2} y^{\prime \prime }-x \left (8+x \right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9606

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9607

\[ {}4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9608

\[ {}x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9609

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9610

\[ {}x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9611

\[ {}x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9612

\[ {}x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9613

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9614

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9615

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9616

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}+6\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9617

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9618

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9619

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9620

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (2+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9621

\[ {}x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9622

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9623

\[ {}x^{2} y^{\prime \prime }+2 x \left (x +2\right ) y^{\prime }+2 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9624

\[ {}x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9625

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }+\left (4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9626

\[ {}x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9627

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {9}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9628

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

9629

\[ {}2 x y^{\prime \prime }+5 \left (-2 x +1\right ) y^{\prime }-5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9630

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9631

\[ {}x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9632

\[ {}x^{4} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9633

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9634

\[ {}\left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9635

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9636

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9637

\[ {}x^{2} \left (1-4 x \right ) y^{\prime \prime }+\left (-\frac {1}{4} x -x^{2}\right ) y^{\prime }-\frac {5 y x}{16} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9638

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9639

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9640

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9641

\[ {}2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9642

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

[_Jacobi]

9643

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9644

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

[_Jacobi]

9645

\[ {}x \left (1-x \right ) y^{\prime \prime }+\frac {\left (-2 x +1\right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

[_Jacobi]

9646

\[ {}4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9647

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9648

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9649

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9650

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9651

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9652

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

9653

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

9654

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9655

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9656

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9657

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

9658

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

9659

\[ {}\left (2-x \right ) x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9660

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9661

\[ {}x y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9662

\[ {}3 x y^{\prime \prime }-2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9663

\[ {}x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9664

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9665

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9666

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9667

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9668

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9669

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9670

\[ {}\left (2 x -3\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9671

\[ {}y^{\prime \prime }-y^{\prime } x -3 y = 0 \]

[_Hermite]

9672

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9673

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

9674

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9675

\[ {}x \left (x +1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9676

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

9677

\[ {}x y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9678

\[ {}x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9679

\[ {}y^{\prime \prime }-2 y^{\prime } x +x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9680

\[ {}x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9681

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-\left (2 x +1\right ) \left (-y+y^{\prime } x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9682

\[ {}2 \left (2-x \right ) x^{2} y^{\prime \prime }-x \left (4-x \right ) y^{\prime }+\left (3-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9683

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9684

\[ {}x y^{\prime \prime }+\left (4 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9685

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

9686

\[ {}x \left (x +2\right ) y^{\prime \prime }+2 \left (x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9687

\[ {}x \left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9688

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9689

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9690

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9691

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9692

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

9693

\[ {}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9694

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

9695

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9696

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9697

\[ {}x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9698

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

9699

\[ {}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

[_Laguerre]

9700

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9701

\[ {}x y^{\prime \prime }+2 y^{\prime }-y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9702

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9703

\[ {}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9704

\[ {}x^{4} y^{\prime \prime }+\lambda y = 0 \]

[[_Emden, _Fowler]]

9705

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9706

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9707

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9708

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

[[_Emden, _Fowler]]

9709

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9710

\[ {}16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9711

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9712

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

9713

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9714

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

9715

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9716

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +30 y = 0 \]

[_Gegenbauer]

9717

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

9718

\[ {}x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9719

\[ {}2 x \left (x -1\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Jacobi]

9720

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9721

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9722

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +\left (4 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9723

\[ {}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9724

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[_Jacobi]

9725

\[ {}4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9726

\[ {}2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9727

\[ {}3 t \left (1+t \right ) y^{\prime \prime }+y^{\prime } t -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9728

\[ {}x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9729

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (x^{2}-1\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9730

\[ {}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9731

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

9732

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

9733

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9734

\[ {}2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9735

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

9736

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9737

\[ {}u^{\prime \prime }+2 u^{\prime }+u = 0 \]

[[_2nd_order, _missing_x]]

9738

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9739

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (1+3 x \right )^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9740

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9741

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9742

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9743

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9744

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9745

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9746

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9747

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9748

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9749

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9750

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9751

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9752

\[ {}y^{\prime \prime }-y^{\prime } x -y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9753

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

9754

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y x = 0 \]

[[_Emden, _Fowler]]

9755

\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9756

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9757

\[ {}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9758

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9759

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9760

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9761

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9762

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9763

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9764

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y = 0 \]

[[_Emden, _Fowler]]

9765

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

9766

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9767

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9768

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9769

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

9770

\[ {}y^{\prime \prime } = \frac {2 y}{x^{2}} \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9771

\[ {}y^{\prime \prime } = \frac {6 y}{x^{2}} \]

[[_Emden, _Fowler]]

9772

\[ {}y^{\prime \prime } = \left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 x \left (x -1\right )}\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

9773

\[ {}y^{\prime \prime } = \frac {20 y}{x^{2}} \]

[[_Emden, _Fowler]]

9774

\[ {}y^{\prime \prime } = \frac {12 y}{x^{2}} \]

[[_Emden, _Fowler]]

9775

\[ {}y^{\prime \prime }-\frac {y}{4 x^{2}} = 0 \]

[[_Emden, _Fowler]]

9776

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9777

\[ {}y^{\prime \prime }+\frac {y}{x^{2}} = 0 \]

[[_Emden, _Fowler]]

9778

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9779

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9780

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9781

\[ {}y^{\prime \prime } = \frac {\left (4 x^{6}-8 x^{5}+12 x^{4}+4 x^{3}+7 x^{2}-20 x +4\right ) y}{4 x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

9782

\[ {}y^{\prime \prime } = \left (\frac {6}{x^{2}}-1\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

9783

\[ {}y^{\prime \prime } = \left (\frac {x^{2}}{4}-\frac {11}{2}\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

9784

\[ {}y^{\prime \prime } = \left (\frac {1}{x}-\frac {3}{16 x^{2}}\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

9785

\[ {}y^{\prime \prime } = \left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 x \left (x -1\right )}\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

9786

\[ {}y^{\prime \prime } = -\frac {\left (5 x^{2}+27\right ) y}{36 \left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

9787

\[ {}y^{\prime \prime } = -\frac {y}{4 x^{2}} \]

[[_Emden, _Fowler]]

9788

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

9789

\[ {}x^{2} y^{\prime \prime } = 2 y \]

[[_2nd_order, _exact, _linear, _homogeneous]]

9790

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9791

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9792

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10789

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

10790

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

10791

\[ {}y^{\prime \prime }+y-\sin \left (n x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10792

\[ {}y^{\prime \prime }+y-\cos \left (b x \right ) a = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10793

\[ {}y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10794

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

10795

\[ {}y^{\prime \prime }-2 y-4 x^{2} {\mathrm e}^{x^{2}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10796

\[ {}y^{\prime \prime }+a^{2} y-\cot \left (a x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10797

\[ {}y^{\prime \prime }+l y = 0 \]

[[_2nd_order, _missing_x]]

10799

\[ {}y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10801

\[ {}y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10822

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

[[_2nd_order, _missing_x]]

10823

\[ {}y^{\prime \prime }+a y^{\prime }+b y-f \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10826

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10827

\[ {}y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10830

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

10832

\[ {}y^{\prime \prime }-y^{\prime } x +\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10834

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10836

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y-{\mathrm e}^{x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10837

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10838

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y-{\mathrm e}^{x^{2}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10843

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10844

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-\left (x +1\right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10845

\[ {}y^{\prime \prime }-x^{2} \left (x +1\right ) y^{\prime }+x \left (x^{4}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10846

\[ {}y^{\prime \prime }+x^{4} y^{\prime }-x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10848

\[ {}y^{\prime \prime }+y^{\prime } \sqrt {x}+\left (\frac {1}{4 \sqrt {x}}+\frac {x}{4}-9\right ) y-x \,{\mathrm e}^{-\frac {x^{{3}/{2}}}{3}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10849

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10851

\[ {}y^{\prime \prime }+a y^{\prime }+\tan \left (x \right )+b y = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10858

\[ {}y^{\prime \prime }+2 a y^{\prime } \cot \left (a x \right )+\left (-a^{2}+b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10864

\[ {}y^{\prime \prime }+f \left (x \right ) y^{\prime }+\left (\frac {f \left (x \right )^{2}}{4}+\frac {f^{\prime }\left (x \right )}{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10875

\[ {}x \left (y^{\prime \prime }+y\right )-\cos \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10877

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

10882

\[ {}x y^{\prime \prime }-y^{\prime }-y a \,x^{3} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10884

\[ {}x y^{\prime \prime }+2 y^{\prime }-y x -{\mathrm e}^{x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10885

\[ {}x y^{\prime \prime }+2 y^{\prime }+a x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10893

\[ {}x y^{\prime \prime }-y^{\prime } x -y-x \left (x +1\right ) {\mathrm e}^{x} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10895

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

10896

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }-2 \left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10903

\[ {}x y^{\prime \prime }-2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x +2 a b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10905

\[ {}x y^{\prime \prime }-\left (x^{2}-x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10906

\[ {}x y^{\prime \prime }-\left (x^{2}-x -2\right ) y^{\prime }-x \left (x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10907

\[ {}x y^{\prime \prime }-\left (2 a \,x^{2}+1\right ) y^{\prime }+b \,x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10909

\[ {}x y^{\prime \prime }+\left (4 x^{2}-1\right ) y^{\prime }-4 x^{3} y-4 x^{5} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10910

\[ {}x y^{\prime \prime }+\left (2 a \,x^{3}-1\right ) y^{\prime }+\left (a^{2} x^{3}+a \right ) x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10911

\[ {}x y^{\prime \prime }+\left (2 a x \ln \left (x \right )+1\right ) y^{\prime }+\left (a^{2} x \ln \left (x \right )^{2}+a \ln \left (x \right )+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10913

\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10914

\[ {}2 x y^{\prime \prime }+y^{\prime }+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10917

\[ {}\left (2 x -1\right ) y^{\prime \prime }-\left (-4+3 x \right ) y^{\prime }+\left (x -3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10919

\[ {}4 x y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10920

\[ {}4 x y^{\prime \prime }+4 y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10930

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

10931

\[ {}x^{2} y^{\prime \prime }-12 y = 0 \]

[[_Emden, _Fowler]]

10932

\[ {}x^{2} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

10934

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10935

\[ {}x^{2} y^{\prime \prime }-\left (a \,x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10936

\[ {}x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10942

\[ {}x^{2} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+a b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10943

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y-a \,x^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10944

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10950

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y-3 x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10952

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

10958

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10959

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y-\sin \left (x \right ) x -\left (a \,x^{2}+12 a +4\right ) \cos \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10960

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10961

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{2}}{\cos \left (x \right )} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10962

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10963

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (a^{2} x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10965

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10966

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y-5 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10967

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x -5 y-x^{2} \ln \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10968

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y-x^{4}+x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10970

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y-\sin \left (x \right ) x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10971

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

10975

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10976

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10977

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10978

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10980

\[ {}x^{2} y^{\prime \prime }-x \left (x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10982

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (2+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10983

\[ {}x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10985

\[ {}x^{2} y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10986

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10987

\[ {}x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10988

\[ {}x^{2} y^{\prime \prime }+\left (a +2 b \right ) x^{2} y^{\prime }+\left (\left (a +b \right ) b \,x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10992

\[ {}x^{2} y^{\prime \prime }+x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10993

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10995

\[ {}x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (4 x^{4}+2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11006

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11007

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11008

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11009

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11011

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11012

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11013

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y-2 \cos \left (x \right )+2 x = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11017

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +2 = 0 \]

[[_2nd_order, _missing_y]]

11018

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11020

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

11021

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -a = 0 \]

[[_2nd_order, _missing_y]]

11025

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-\left (1+3 x \right ) y^{\prime }-\left (x^{2}-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11026

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11030

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 a x y^{\prime }+a \left (a -1\right ) y = 0 \]

[_Gegenbauer]

11033

\[ {}\left (-a^{2}+x^{2}\right ) y^{\prime \prime }+8 y^{\prime } x +12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11034

\[ {}x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11036

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (2+3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11037

\[ {}\left (x^{2}+x -2\right ) y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }-\left (6 x^{2}+7 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11045

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x^{2}+x -1\right ) y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11046

\[ {}x \left (x +3\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y-\left (20 x +30\right ) \left (x^{2}+3 x \right )^{{7}/{3}} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11047

\[ {}\left (x^{2}+3 x +4\right ) y^{\prime \prime }+\left (x^{2}+x +1\right ) y^{\prime }-\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11049

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11050

\[ {}2 x^{2} y^{\prime \prime }-\left (2 x^{2}+l -5 x \right ) y^{\prime }-\left (4 x -1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11053

\[ {}\left (2 x^{2}+6 x +4\right ) y^{\prime \prime }+\left (10 x^{2}+21 x +8\right ) y^{\prime }+\left (12 x^{2}+17 x +8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11054

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

11059

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (4 x^{2}+1\right ) y-4 \sqrt {x^{3}}\, {\mathrm e}^{x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11060

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (a \,x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11062

\[ {}4 x^{2} y^{\prime \prime }+5 y^{\prime } x -y-\ln \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11063

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x -\left (4 x^{2}+12 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11064

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (2 x -1\right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11065

\[ {}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+6\right ) \left (x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11066

\[ {}4 x^{2} y^{\prime \prime }+4 x^{2} \ln \left (x \right ) y^{\prime }+\left (x^{2} \ln \left (x \right )^{2}+2 x -8\right ) y-4 x^{2} \sqrt {{\mathrm e}^{x} x^{-x}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11067

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y-3 x -1 = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11069

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11070

\[ {}9 x \left (x -1\right ) y^{\prime \prime }+3 \left (2 x -1\right ) y^{\prime }-20 y = 0 \]

[_Jacobi]

11071

\[ {}16 x^{2} y^{\prime \prime }+\left (4 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11072

\[ {}16 x^{2} y^{\prime \prime }+32 y^{\prime } x -\left (5+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11073

\[ {}\left (27 x^{2}+4\right ) y^{\prime \prime }+27 y^{\prime } x -3 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11075

\[ {}50 x \left (x -1\right ) y^{\prime \prime }+25 \left (2 x -1\right ) y^{\prime }-2 y = 0 \]

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11080

\[ {}\left (a \,x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11081

\[ {}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11082

\[ {}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }-2 a^{2} y = 0 \]

[_Gegenbauer]

11083

\[ {}\left (a \,x^{2}+b x \right ) y^{\prime \prime }+2 b y^{\prime }-2 a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11086

\[ {}x^{3} y^{\prime \prime }+y^{\prime } x -\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11089

\[ {}x^{3} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11090

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime }+y x -\ln \left (x \right )^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11092

\[ {}x^{3} y^{\prime \prime }+3 x^{2} y^{\prime }+y x -1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11094

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (x^{2}-1\right ) y^{\prime }-2 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11097

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime }+y a \,x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11101

\[ {}x \left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime }-6 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11102

\[ {}x \left (x^{2}-2\right ) y^{\prime \prime }-\left (x^{3}+3 x^{2}-2 x -2\right ) y^{\prime }+\left (x^{2}+4 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11103

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11104

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+2 x \left (2+3 x \right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11105

\[ {}y^{\prime \prime } = -\frac {2 \left (x -2\right ) y^{\prime }}{x \left (x -1\right )}+\frac {2 \left (x +1\right ) y}{x^{2} \left (x -1\right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11106

\[ {}y^{\prime \prime } = \frac {\left (5 x -4\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (9 x -6\right ) y}{x^{2} \left (x -1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11108

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x +1}-\frac {y}{x \left (x +1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11110

\[ {}y^{\prime \prime } = \frac {2 y}{x \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11113

\[ {}y^{\prime \prime } = \frac {\left (x -4\right ) y^{\prime }}{2 x \left (x -2\right )}-\frac {\left (x -3\right ) y}{2 x^{2} \left (x -2\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11114

\[ {}y^{\prime \prime } = \frac {y^{\prime }}{x +1}-\frac {\left (1+3 x \right ) y}{4 x^{2} \left (x +1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11118

\[ {}y^{\prime \prime } = -\frac {\left (1-3 x \right ) y}{\left (x -1\right ) \left (2 x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11119

\[ {}y^{\prime \prime } = -\frac {\left (3 x +a +2 b \right ) y^{\prime }}{2 \left (x +a \right ) \left (x +b \right )}-\frac {\left (a -b \right ) y}{4 \left (x +a \right )^{2} \left (x +b \right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11120

\[ {}y^{\prime \prime } = \frac {\left (6 x -1\right ) y^{\prime }}{3 x \left (x -2\right )}+\frac {y}{3 x^{2} \left (x -2\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11122

\[ {}y^{\prime \prime } = \frac {2 \left (a x +2 b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (2 a x +6 b \right ) y}{\left (a x +b \right ) x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11124

\[ {}y^{\prime \prime } = -\frac {a y}{x^{4}} \]

[[_Emden, _Fowler]]

11127

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x^{3}}+\frac {2 y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11128

\[ {}y^{\prime \prime } = \frac {\left (a +b \right ) y^{\prime }}{x^{2}}-\frac {\left (x \left (a +b \right )+a b \right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11132

\[ {}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {a^{2} y}{x^{4}} \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11133

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}+\frac {y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11134

\[ {}y^{\prime \prime } = -\frac {2 \left (x +a \right ) y^{\prime }}{x^{2}}-\frac {b y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11135

\[ {}y^{\prime \prime } = \frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11136

\[ {}y^{\prime \prime } = \frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {2 y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11137

\[ {}y^{\prime \prime } = -\frac {\left (x^{3}-1\right ) y^{\prime }}{x \left (x^{3}+1\right )}+\frac {x y}{x^{3}+1} \]

[[_2nd_order, _with_linear_symmetries]]

11140

\[ {}y^{\prime \prime } = \frac {\left (x^{2}-2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (x^{2}-2\right ) y}{x^{2} \left (x^{2}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11143

\[ {}y^{\prime \prime } = \frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (a \left (a +1\right )-a \,x^{2} \left (a +3\right )\right ) y}{x^{2} \left (x^{2}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11147

\[ {}y^{\prime \prime } = -\frac {a y}{\left (x^{2}+1\right )^{2}} \]

[_Halm]

11148

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}+1}-\frac {y}{\left (x^{2}+1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11151

\[ {}y^{\prime \prime } = -\frac {a y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11152

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}+\frac {a^{2} y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11158

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+a \right ) y^{\prime }}{x \left (x^{2}+a \right )}-\frac {b y}{x^{2} \left (x^{2}+a \right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11159

\[ {}y^{\prime \prime } = -\frac {b^{2} y}{\left (a^{2}+x^{2}\right )^{2}} \]

[[_Emden, _Fowler]]

11160

\[ {}y^{\prime \prime } = -\frac {2 \left (x^{2}-1\right ) y^{\prime }}{x \left (x -1\right )^{2}}-\frac {\left (-2 x^{2}+2 x +2\right ) y}{x^{2} \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11161

\[ {}y^{\prime \prime } = \frac {12 y}{\left (x +1\right )^{2} \left (x^{2}+2 x +3\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11162

\[ {}y^{\prime \prime } = -\frac {b y}{x^{2} \left (-a +x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11163

\[ {}y^{\prime \prime } = -\frac {b y}{x^{2} \left (-a +x \right )^{2}}+c \]

[[_2nd_order, _linear, _nonhomogeneous]]

11164

\[ {}y^{\prime \prime } = \frac {c y}{\left (-a +x \right )^{2} \left (x -b \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11165

\[ {}y^{\prime \prime } = -\frac {\left (\left (\alpha +\beta +1\right ) \left (-a +x \right )^{2} \left (x -b \right )+\left (1-\alpha -\beta \right ) \left (x -b \right )^{2} \left (-a +x \right )\right ) y^{\prime }}{\left (-a +x \right )^{2} \left (x -b \right )^{2}}-\frac {\alpha \beta \left (a -b \right )^{2} y}{\left (-a +x \right )^{2} \left (x -b \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11167

\[ {}y^{\prime \prime } = -\frac {\left (a \,x^{2}+a -3\right ) y}{4 \left (x^{2}+1\right )^{2}} \]

[_Halm]

11168

\[ {}y^{\prime \prime } = \frac {18 y}{\left (2 x +1\right )^{2} \left (x^{2}+x +1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11169

\[ {}y^{\prime \prime } = \frac {3 y}{4 \left (x^{2}+x +1\right )^{2}} \]

[[_Emden, _Fowler]]

11172

\[ {}y^{\prime \prime } = -\frac {3 y}{16 x^{2} \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11176

\[ {}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {c y}{x^{2} \left (a x +b \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11177

\[ {}y^{\prime \prime } = -\frac {y}{\left (a x +b \right )^{4}} \]

[[_Emden, _Fowler]]

11178

\[ {}y^{\prime \prime } = -\frac {A y}{\left (a \,x^{2}+b x +c \right )^{2}} \]

[[_Emden, _Fowler]]

11179

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x^{4}}+\frac {y}{x^{5}} \]

[[_2nd_order, _with_linear_symmetries]]

11181

\[ {}y^{\prime \prime } = \frac {\left (1+3 x \right ) y^{\prime }}{\left (x -1\right ) \left (x +1\right )}-\frac {36 \left (x +1\right )^{2} y}{\left (x -1\right )^{2} \left (3 x +5\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11186

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (-2 x^{2}+1\right ) y}{4 x^{6}} \]

[[_2nd_order, _with_linear_symmetries]]

11187

\[ {}y^{\prime \prime } = \frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (a \,x^{4}+10 x^{2}+1\right ) y}{4 x^{6}} \]

[[_2nd_order, _with_linear_symmetries]]

11188

\[ {}y^{\prime \prime } = -\frac {27 x y}{16 \left (x^{3}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11203

\[ {}y^{\prime \prime } = -\frac {a \left (n -1\right ) \sin \left (2 a x \right ) y^{\prime }}{\cos \left (a x \right )^{2}}-\frac {n \,a^{2} \left (\left (n -1\right ) \sin \left (a x \right )^{2}+\cos \left (a x \right )^{2}\right ) y}{\cos \left (a x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11227

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (x -1\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11228

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (-x -1\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11229

\[ {}y^{\prime \prime } = -\frac {b^{2} y}{\left (-a^{2}+x^{2}\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

12279

\[ {}y^{\prime \prime }+a y = 0 \]

[[_2nd_order, _missing_x]]

12281

\[ {}y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12283

\[ {}y^{\prime \prime }+a^{3} x \left (-a x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12289

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

[[_2nd_order, _missing_x]]

12292

\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2}+a x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12293

\[ {}y^{\prime \prime }+a y^{\prime }+b x \left (-b \,x^{3}+a x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12302

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12303

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12304

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (a x +b -c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12305

\[ {}y^{\prime \prime }+\left (a x +2 b \right ) y^{\prime }+\left (a b x +b^{2}-a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12308

\[ {}y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x^{2}+2 a b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12311

\[ {}y^{\prime \prime }+a \left (-b^{2}+x^{2}\right ) y^{\prime }-a \left (x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12312

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (a \,x^{2}+b -c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12313

\[ {}y^{\prime \prime }+\left (a \,x^{2}+2 b \right ) y^{\prime }+\left (a b \,x^{2}-a x +b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12314

\[ {}y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+a \,x^{2}+b +2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12316

\[ {}y^{\prime \prime }+\left (a b \,x^{2}+b x +2 a \right ) y^{\prime }+a^{2} \left (b \,x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12317

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+x \left (a b \,x^{2}+b c +2 a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12318

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (a b \,x^{3}+a c \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12319

\[ {}y^{\prime \prime }+\left (a \,x^{3}+2 b \right ) y^{\prime }+\left (a b \,x^{3}-a \,x^{2}+b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12320

\[ {}y^{\prime \prime }+\left (a \,x^{3}+b x \right ) y^{\prime }+2 \left (2 a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12321

\[ {}y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{3}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12339

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12347

\[ {}x y^{\prime \prime }+a x y^{\prime }+a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12350

\[ {}x y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a \left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12353

\[ {}x y^{\prime \prime }-\left (a x +1\right ) y^{\prime }-b \,x^{2} \left (b x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12354

\[ {}x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+\left (b \,x^{3}+a^{2} x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12358

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }-\left (a c \,x^{2}+\left (b c +c^{2}+a \right ) x +b +2 c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12359

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +2\right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12365

\[ {}x y^{\prime \prime }+x \left (a \,x^{2}+b \right ) y^{\prime }+\left (3 a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12366

\[ {}x y^{\prime \prime }+\left (a \,x^{3}+b \,x^{2}+2\right ) y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12367

\[ {}x y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+a x -1\right ) y^{\prime }+a^{2} b \,x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12388

\[ {}x^{2} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

12394

\[ {}x^{2} y^{\prime \prime }-\left (a \,x^{3}+\frac {5}{16}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12401

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

12406

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -\left (a^{2} x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12407

\[ {}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (b^{2} x^{2}+a \left (a +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12408

\[ {}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (-b^{2} x^{2}+a \left (a +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12418

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+\left (a b -1\right ) x +b \right ) y^{\prime }+a^{2} b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12429

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12430

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +n^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12433

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-3 y^{\prime } x +n \left (n +2\right ) y = 0 \]

[_Gegenbauer]

12440

\[ {}\left (a \,x^{2}+b \right ) y^{\prime \prime }+a x y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12442

\[ {}\left (-a^{2}+x^{2}\right ) y^{\prime \prime }+2 b x y^{\prime }+b \left (b -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12443

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime \prime }+2 b x y^{\prime }+b \left (b -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12452

\[ {}\left (2 a x +x^{2}+b \right ) y^{\prime \prime }+\left (x +a \right ) y^{\prime }-m^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12455

\[ {}\left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+d y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12456

\[ {}\left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+3 \left (a x +b \right ) y^{\prime }+d y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12467

\[ {}x \left (a \,x^{2}+b \right ) y^{\prime \prime }+2 \left (a \,x^{2}+b \right ) y^{\prime }-2 a x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12470

\[ {}x^{2} \left (a x +b \right ) y^{\prime \prime }-2 x \left (a x +2 b \right ) y^{\prime }+2 \left (a x +3 b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12471

\[ {}x^{2} \left (a x +b \right ) y^{\prime \prime }+\left (a \left (2-n -m \right ) x^{2}-b \left (m +n \right ) x \right ) y^{\prime }+\left (a m \left (n -1\right ) x +b n \left (m +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12489

\[ {}x^{4} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

12491

\[ {}x^{4} y^{\prime \prime }-\left (a +b \right ) x^{2} y^{\prime }+\left (x \left (a +b \right )+a b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12492

\[ {}x^{4} y^{\prime \prime }+2 x^{2} \left (x +a \right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12494

\[ {}x^{2} \left (-a +x \right )^{2} y^{\prime \prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12495

\[ {}x^{2} \left (-a +x \right )^{2} y^{\prime \prime }+b y = c \,x^{2} \left (-a +x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12498

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+a y = 0 \]

[_Halm]

12499

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime }+a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12500

\[ {}\left (a^{2}+x^{2}\right )^{2} y^{\prime \prime }+b^{2} y = 0 \]

[[_Emden, _Fowler]]

12501

\[ {}\left (-a^{2}+x^{2}\right )^{2} y^{\prime \prime }+b^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12502

\[ {}4 \left (x^{2}+1\right )^{2} y^{\prime \prime }+\left (a \,x^{2}+a -3\right ) y = 0 \]

[_Halm]

12503

\[ {}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+2 a x \left (a \,x^{2}+b \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12507

\[ {}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+\left (2 a x +c \right ) \left (a \,x^{2}+b \right ) y^{\prime }+k y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12511

\[ {}\left (-a +x \right )^{2} \left (x -b \right )^{2} y^{\prime \prime }-c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12512

\[ {}\left (-a +x \right )^{2} \left (x -b \right )^{2} y^{\prime \prime }+\left (-a +x \right ) \left (x -b \right ) \left (2 x +\lambda \right ) y^{\prime }+\mu y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12513

\[ {}\left (a \,x^{2}+b x +c \right )^{2} y^{\prime \prime }+A y = 0 \]

[[_Emden, _Fowler]]

12516

\[ {}\left (a \,x^{2}+b x +c \right )^{2} y^{\prime \prime }+\left (2 a x +k \right ) \left (a \,x^{2}+b x +c \right ) y^{\prime }+m y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12555

\[ {}y^{\prime \prime }+2 a \,{\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{\lambda x}+\lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12697

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

12698

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

12708

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{{\mathrm e}^{x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12710

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12711

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

12713

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12715

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12716

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12717

\[ {}y^{\prime \prime }+4 y = x^{2}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12718

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{2 x}-\sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12719

\[ {}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}+x^{3}-x \]

[[_2nd_order, _linear, _nonhomogeneous]]

12720

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{2 x}-\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12724

\[ {}y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1 \]

[[_2nd_order, _missing_y]]

12728

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (1-x \right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12729

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

12730

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \cos \left (x \right )-{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12732

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x^{3}-x \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12737

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12738

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12740

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

12743

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+y x = x \]

[[_2nd_order, _with_linear_symmetries]]

12744

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = x^{2}-x -1 \]

[[_2nd_order, _with_linear_symmetries]]

12745

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12746

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

12747

\[ {}\sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 \sin \left (x \right ) y = {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12748

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12750

\[ {}x y^{\prime \prime }+2 y^{\prime }-y x = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12752

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12754

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12755

\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime }-8 x^{3} y = 4 x^{3} {\mathrm e}^{-x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12756

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

[_Laguerre]

12757

\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12758

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (-x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12759

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12760

\[ {}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12761

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12762

\[ {}\left (2 x^{3}-1\right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12763

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

12768

\[ {}y^{\prime \prime }+y^{\prime } x = x \]

[[_2nd_order, _missing_y]]

12769

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

12778

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12779

\[ {}\left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12782

\[ {}x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12791

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

12794

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2+4 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12796

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

12799

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0 \]

[[_2nd_order, _missing_y]]

12806

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 0 \]

[[_2nd_order, _missing_x]]

12810

\[ {}t^{2} x^{\prime \prime }-6 x = 0 \]

[[_Emden, _Fowler]]

12811

\[ {}2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \]

[[_2nd_order, _missing_x]]

12816

\[ {}x^{\prime \prime } = -3 \sqrt {t} \]
i.c.

[[_2nd_order, _quadrature]]

12821

\[ {}x^{\prime }+t x^{\prime \prime } = 1 \]
i.c.

[[_2nd_order, _missing_y]]

12850

\[ {}\frac {x^{\prime }+t x^{\prime \prime }}{t} = -2 \]

[[_2nd_order, _missing_y]]

12874

\[ {}x^{\prime \prime }+x^{\prime } = 3 t \]

[[_2nd_order, _missing_y]]

12890

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12891

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12892

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12893

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12894

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12895

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12896

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12897

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12898

\[ {}x^{\prime \prime }+x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12899

\[ {}x^{\prime \prime }-4 x^{\prime }+6 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12900

\[ {}x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12901

\[ {}x^{\prime \prime }-12 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12902

\[ {}2 x^{\prime \prime }+3 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12903

\[ {}\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12904

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12905

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12906

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 t^{3}-1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

12907

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 \cos \left (t \right )-2 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12908

\[ {}x^{\prime \prime }+x^{\prime }+x = 12 \]

[[_2nd_order, _missing_x]]

12909

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{2} {\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12910

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (7 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12911

\[ {}x^{\prime \prime }+x^{\prime }+x = {\mathrm e}^{2 t} \cos \left (t \right )+t^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12912

\[ {}x^{\prime \prime }+x^{\prime }+x = t \,{\mathrm e}^{-t} \sin \left (\pi t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12913

\[ {}x^{\prime \prime }+x^{\prime }+x = \left (t +2\right ) \sin \left (\pi t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12914

\[ {}x^{\prime \prime }+x^{\prime }+x = 4 t +5 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

12915

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (2 t \right )+t \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12916

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{3}+1-4 t \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12917

\[ {}x^{\prime \prime }+x^{\prime }+x = -6+2 \,{\mathrm e}^{2 t} \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12918

\[ {}x^{\prime \prime }+7 x = t \,{\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12919

\[ {}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t} \]

[[_2nd_order, _missing_y]]

12920

\[ {}x^{\prime \prime }+x = t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

12921

\[ {}x^{\prime \prime }-3 x^{\prime }-4 x = 2 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

12922

\[ {}x^{\prime \prime }+x = 9 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

12923

\[ {}x^{\prime \prime }-4 x = \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12924

\[ {}x^{\prime \prime }+x^{\prime }+2 x = t \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12925

\[ {}x^{\prime \prime }-b x^{\prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12926

\[ {}x^{\prime \prime }-3 x^{\prime }-40 x = 2 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12927

\[ {}x^{\prime \prime }-2 x^{\prime } = 4 \]
i.c.

[[_2nd_order, _missing_x]]

12928

\[ {}x^{\prime \prime }+2 x = \cos \left (\sqrt {2}\, t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12929

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{100}+4 x = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12930

\[ {}x^{\prime \prime }+w^{2} x = \cos \left (\beta t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12931

\[ {}x^{\prime \prime }+3025 x = \cos \left (45 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12932

\[ {}x^{\prime \prime } = -\frac {x}{t^{2}} \]

[[_Emden, _Fowler]]

12933

\[ {}x^{\prime \prime } = \frac {4 x}{t^{2}} \]

[[_Emden, _Fowler]]

12934

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12935

\[ {}t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12936

\[ {}t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0 \]

[[_Emden, _Fowler]]

12937

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12938

\[ {}t^{2} x^{\prime \prime }+t x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

12939

\[ {}t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0 \]
i.c.

[[_Emden, _Fowler]]

12940

\[ {}x^{\prime \prime }+t^{2} x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

12941

\[ {}x^{\prime \prime }+x = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12942

\[ {}x^{\prime \prime }-x = t \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12943

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12944

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12945

\[ {}x^{\prime \prime }+x = \frac {1}{1+t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12946

\[ {}x^{\prime \prime }-2 x^{\prime }+x = \frac {{\mathrm e}^{t}}{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12947

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{t} = a \]

[[_2nd_order, _missing_y]]

12948

\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

[[_2nd_order, _with_linear_symmetries]]

12949

\[ {}x^{\prime \prime }-x = \frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13025

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

[[_2nd_order, _missing_x]]

13026

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13027

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13032

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

[[_2nd_order, _missing_x]]

13037

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = -8 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13039

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13042

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13045

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13167

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13168

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13170

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

13171

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13172

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13173

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13174

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

13183

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13184

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2-12 x +6 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

13185

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

13186

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

13187

\[ {}4 y^{\prime \prime }-12 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

13188

\[ {}3 y^{\prime \prime }-14 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

13191

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

13192

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

13193

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

13194

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

13195

\[ {}y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

13196

\[ {}4 y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

13209

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13210

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13211

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13212

\[ {}3 y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13213

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13214

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13215

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13216

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13217

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13218

\[ {}y^{\prime \prime }+6 y^{\prime }+58 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13219

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13220

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13221

\[ {}9 y^{\prime \prime }+6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13222

\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13229

\[ {}y^{\prime \prime }-3 y^{\prime }+8 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13230

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 4 \,{\mathrm e}^{2 x}-21 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13231

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 6 \sin \left (2 x \right )+7 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13232

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13233

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13234

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 16 x -12 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

13235

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = 2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13236

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 5 x \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13241

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 10 \,{\mathrm e}^{2 x}-18 \,{\mathrm e}^{3 x}-6 x -11 \]

[[_2nd_order, _linear, _nonhomogeneous]]

13242

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x}-4 x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13249

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

13250

\[ {}y^{\prime \prime }+4 y = 12 x^{2}-16 x \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13253

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13254

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 16 x +20 \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13255

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 9 x \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13256

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 4 x \,{\mathrm e}^{-3 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13257

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 8 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13258

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 27 \,{\mathrm e}^{-6 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13259

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 18 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13260

\[ {}y^{\prime \prime }-10 y^{\prime }+29 y = 8 \,{\mathrm e}^{5 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13261

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 8 \sin \left (3 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13262

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 8 \,{\mathrm e}^{2 x}-5 \,{\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13263

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13264

\[ {}y^{\prime \prime }-y = 3 x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13265

\[ {}y^{\prime \prime }+y = 3 x^{2}-4 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13266

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13269

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = x^{3}+x +{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13270

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x}+{\mathrm e}^{3 x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13271

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \left (\cos \left (x \right )+1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13272

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = x^{4} {\mathrm e}^{x}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13273

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13283

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13284

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13285

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13286

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13287

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13288

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13289

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13290

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13291

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13292

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13293

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13294

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13295

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13296

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{2 x}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13297

\[ {}y^{\prime \prime }+y = \frac {1}{1+\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13298

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13299

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13300

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13301

\[ {}x^{2} y^{\prime \prime }-6 y^{\prime } x +10 y = 3 x^{4}+6 x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13302

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

13303

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = \left (x +2\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13304

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

13305

\[ {}x \left (x -2\right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (x -1\right ) y = 3 x^{2} \left (x -2\right )^{2} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13306

\[ {}\left (2 x +1\right ) \left (x +1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = \left (2 x +1\right )^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13309

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

13310

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13311

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13312

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13313

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13314

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]

[[_Emden, _Fowler]]

13315

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13316

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13317

\[ {}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13318

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

13322

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 4 x -6 \]

[[_2nd_order, _with_linear_symmetries]]

13323

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

13324

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13325

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 2 x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

13326

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13328

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13329

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13330

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13331

\[ {}x^{2} y^{\prime \prime }-2 y = 4 x -8 \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13332

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = -6 x^{3}+4 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13333

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 10 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13334

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13335

\[ {}x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13336

\[ {}\left (x +2\right )^{2} y^{\prime \prime }-\left (x +2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13337

\[ {}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13440

\[ {}t x^{\prime \prime }-2 x^{\prime }+9 t^{5} x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13442

\[ {}\left (t^{3}-2 t^{2}\right ) x^{\prime \prime }-\left (t^{3}+2 t^{2}-6 t \right ) x^{\prime }+\left (3 t^{2}-6\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13444

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+3 x = 0 \]

[[_Emden, _Fowler]]

13446

\[ {}t^{2} x^{\prime \prime }+\left (2 t^{3}+7 t \right ) x^{\prime }+\left (8 t^{2}+8\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13447

\[ {}t^{3} x^{\prime \prime }-\left (t^{3}+2 t^{2}-t \right ) x^{\prime }+\left (t^{2}+t -1\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13450

\[ {}\frac {\left (1+t \right ) x^{\prime \prime }}{t}-\frac {x^{\prime }}{t^{2}}+\frac {x}{t^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13451

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13456

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13457

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13458

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13459

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13460

\[ {}x y^{\prime \prime }+y^{\prime }+\frac {\lambda y}{x} = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13461

\[ {}x y^{\prime \prime }+y^{\prime }+\frac {\lambda y}{x} = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13462

\[ {}2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }+\frac {\lambda y}{x^{2}+1} = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13463

\[ {}-\frac {6 y^{\prime } x}{\left (3 x^{2}+1\right )^{2}}+\frac {y^{\prime \prime }}{3 x^{2}+1}+\lambda \left (3 x^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13528

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13529

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13530

\[ {}z^{\prime \prime }-4 z^{\prime }+13 z = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13531

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13532

\[ {}y^{\prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13533

\[ {}\theta ^{\prime \prime }+4 \theta = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13534

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13535

\[ {}2 z^{\prime \prime }+7 z^{\prime }-4 z = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13536

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13537

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13538

\[ {}4 x^{\prime \prime }-20 x^{\prime }+21 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13539

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13540

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13541

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13542

\[ {}y^{\prime \prime }+\omega ^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13543

\[ {}x^{\prime \prime }-4 x = t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13544

\[ {}x^{\prime \prime }-4 x^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

13545

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 3 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

13546

\[ {}x^{\prime \prime }+x^{\prime }-2 x = {\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

13547

\[ {}x^{\prime \prime }+2 x^{\prime }+x = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

13548

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\alpha t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13549

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13550

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

13551

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13552

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = {\mathrm e}^{-2 t} \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13553

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = {\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

13554

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13555

\[ {}x^{\prime \prime }+4 x = 289 t \,{\mathrm e}^{t} \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13556

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\alpha t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13557

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\omega t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13568

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

13569

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13570

\[ {}y^{\prime \prime }+4 y = \cot \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13571

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13572

\[ {}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right ) \]

[[_2nd_order, _missing_y]]

13574

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13575

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

13576

\[ {}t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13577

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }-x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13578

\[ {}x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z = 0 \]
i.c.

[[_Emden, _Fowler]]

13579

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13580

\[ {}4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13581

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

13582

\[ {}3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13583

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13584

\[ {}a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

13678

\[ {}y^{\prime \prime }-6 y^{\prime }+10 y = 100 \]
i.c.

[[_2nd_order, _missing_x]]

13679

\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13681

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13682

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 2 \]

[[_2nd_order, _with_linear_symmetries]]

13683

\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13685

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

13696

\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13697

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

13700

\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13701

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13703

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13704

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

13709

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 2 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13713

\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13719

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13750

\[ {}x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13751

\[ {}y^{\prime \prime } = y+x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13758

\[ {}y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

13760

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

13768

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13771

\[ {}y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13773

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+4 y x = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13774

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = -2 x +1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13775

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13777

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 y x = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13779

\[ {}x y^{\prime \prime }+x^{2} y^{\prime }+2 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13782

\[ {}x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13789

\[ {}y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13790

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime } = \left (25-6 x \right ) y \]

[[_2nd_order, _with_linear_symmetries]]

13791

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x +1}-\frac {\left (x +2\right ) y}{x^{2} \left (x +1\right )} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13792

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13793

\[ {}\frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (1+3 x \right ) y^{\prime }}{x}+\frac {y}{x} = 3 x \]

[[_2nd_order, _linear, _nonhomogeneous]]

13796

\[ {}y^{\prime \prime }+\left (5+2 x \right ) y^{\prime }+\left (4 x +8\right ) y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13865

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = t^{7} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13870

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1 \]

[[_2nd_order, _missing_x]]

13871

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

13872

\[ {}y^{\prime \prime }-3 y^{\prime }-7 y = 4 \]

[[_2nd_order, _missing_x]]

13874

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13910

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{{3}/{2}} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13911

\[ {}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13912

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

13913

\[ {}y^{\prime \prime }+y = f \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13914

\[ {}x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13915

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13927

\[ {}y^{\prime \prime }+\alpha ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

13928

\[ {}y^{\prime \prime }-\alpha ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

13929

\[ {}y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \]

[[_2nd_order, _missing_x]]

13937

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

13938

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13939

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

14006

\[ {}y^{\prime \prime } = a^{2} y \]

[[_2nd_order, _missing_x]]

14008

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _missing_y]]

14015

\[ {}y^{\prime \prime } = 9 y \]

[[_2nd_order, _missing_x]]

14016

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

14017

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

14018

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

[[_2nd_order, _missing_x]]

14019

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

14020

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

14021

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

14022

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

14023

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

14032

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = x \]

[[_2nd_order, _with_linear_symmetries]]

14033

\[ {}s^{\prime \prime }-a^{2} s = 1+t \]

[[_2nd_order, _with_linear_symmetries]]

14034

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14035

\[ {}y^{\prime \prime }-y = 5 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

14036

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

14037

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

14038

\[ {}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

14039

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]

[[_2nd_order, _missing_y]]

14040

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = {\mathrm e}^{-x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14041

\[ {}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14045

\[ {}y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14046

\[ {}y^{\prime \prime }+n^{2} y = h \sin \left (r x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14047

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14048

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14049

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (2 x \right )^{{3}/{2}}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14056

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14059

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14088

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14090

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14091

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

14092

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14098

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

14101

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 0 \]

[[_2nd_order, _missing_x]]

14102

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

14105

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

14106

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14107

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

14113

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

14115

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

14118

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14119

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14120

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14121

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14123

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14124

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14125

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14126

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14127

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14258

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14260

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

14261

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

14264

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

14265

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

14266

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler]]

14268

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14270

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

14271

\[ {}y^{\prime \prime }-4 y = 31 \]
i.c.

[[_2nd_order, _missing_x]]

14272

\[ {}y^{\prime \prime }+9 y = 27 x +18 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14273

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = -3 x -\frac {3}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14274

\[ {}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

14284

\[ {}y^{\prime \prime }+\alpha y = 0 \]

[[_2nd_order, _missing_x]]

14640

\[ {}y^{\prime \prime }-6 y^{\prime }-7 y = 0 \]

[[_2nd_order, _missing_x]]

14641

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

14671

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14672

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14673

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14674

\[ {}y^{\prime \prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14675

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{4 t} \]

[[_2nd_order, _with_linear_symmetries]]

14676

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \,{\mathrm e}^{-3 t} \]

[[_2nd_order, _with_linear_symmetries]]

14677

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{3 t} \]

[[_2nd_order, _with_linear_symmetries]]

14678

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

14679

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

14680

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

14681

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = {\mathrm e}^{4 t} \]

[[_2nd_order, _with_linear_symmetries]]

14682

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 4 \,{\mathrm e}^{-3 t} \]

[[_2nd_order, _with_linear_symmetries]]

14683

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14684

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14685

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14686

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14687

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14688

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14689

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14690

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14691

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14692

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14693

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

14694

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 5 \]
i.c.

[[_2nd_order, _missing_x]]

14695

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 2 \]
i.c.

[[_2nd_order, _missing_x]]

14696

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 10 \]
i.c.

[[_2nd_order, _missing_x]]

14697

\[ {}y^{\prime \prime }+4 y^{\prime }+6 y = -8 \]
i.c.

[[_2nd_order, _missing_x]]

14698

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14699

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14700

\[ {}y^{\prime \prime }+2 y = -3 \]
i.c.

[[_2nd_order, _missing_x]]

14701

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14702

\[ {}y^{\prime \prime }+9 y = 6 \]
i.c.

[[_2nd_order, _missing_x]]

14703

\[ {}y^{\prime \prime }+2 y = -{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14704

\[ {}y^{\prime \prime }+4 y = -3 t^{2}+2 t +3 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14705

\[ {}y^{\prime \prime }+2 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

14706

\[ {}y^{\prime \prime }+4 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

14707

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14708

\[ {}y^{\prime \prime }+4 y = t -\frac {1}{20} t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14709

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4+{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14710

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-t}-4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14711

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14712

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14713

\[ {}y^{\prime \prime }+4 y = t +{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14714

\[ {}y^{\prime \prime }+4 y = 6+t^{2}+{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14715

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14716

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 5 \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14717

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14718

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14719

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14720

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = -4 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14721

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 3 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14722

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -\cos \left (5 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14723

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14724

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14725

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14726

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14727

\[ {}y^{\prime \prime }+6 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14728

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14729

\[ {}y^{\prime \prime }+3 y^{\prime }+y = \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14730

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 3+2 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14731

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-t} \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14732

\[ {}y^{\prime \prime }+9 y = \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14733

\[ {}y^{\prime \prime }+9 y = 5 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14734

\[ {}y^{\prime \prime }+4 y = -\cos \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14735

\[ {}y^{\prime \prime }+4 y = 3 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14736

\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14762

\[ {}y^{\prime \prime } = \frac {x +1}{x -1} \]

[[_2nd_order, _quadrature]]

14763

\[ {}x^{2} y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

14765

\[ {}y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14766

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

14776

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]

[[_2nd_order, _quadrature]]

14777

\[ {}y^{\prime \prime }-3 = x \]

[[_2nd_order, _quadrature]]

14785

\[ {}x y^{\prime \prime }+2 = \sqrt {x} \]
i.c.

[[_2nd_order, _quadrature]]

14987

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

[[_2nd_order, _missing_y]]

14988

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

[[_2nd_order, _missing_y]]

14989

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

14990

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

14991

\[ {}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime } \]

[[_2nd_order, _missing_y]]

14992

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

14999

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]

[[_2nd_order, _missing_x]]

15001

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

15009

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

15015

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

[[_2nd_order, _missing_y]]

15019

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

15021

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

15022

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

15023

\[ {}y^{\prime \prime } = y^{\prime } \]
i.c.

[[_2nd_order, _missing_x]]

15024

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _missing_y]]

15027

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]
i.c.

[[_2nd_order, _missing_y]]

15047

\[ {}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

15074

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15075

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15076

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15077

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15078

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15079

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15080

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

15081

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15082

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15083

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15084

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15087

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15088

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15089

\[ {}y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15090

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15093

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

15094

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]

[[_2nd_order, _missing_x]]

15095

\[ {}y^{\prime \prime }-25 y = 0 \]

[[_2nd_order, _missing_x]]

15096

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15097

\[ {}4 y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

15098

\[ {}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

15099

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15100

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15101

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15102

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15103

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15104

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15105

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

15106

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15107

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15108

\[ {}25 y^{\prime \prime }-10 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15109

\[ {}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

15110

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

15111

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15112

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15113

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15114

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15115

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15116

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15117

\[ {}y^{\prime \prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

15118

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

15119

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

15120

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

[[_2nd_order, _missing_x]]

15121

\[ {}9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

15122

\[ {}4 y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15123

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15124

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15125

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15126

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15127

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15128

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15129

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15130

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15157

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15158

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15159

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

15160

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15161

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

15162

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

15163

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

15164

\[ {}x^{2} y^{\prime \prime }-19 y^{\prime } x +100 y = 0 \]

[[_Emden, _Fowler]]

15165

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +29 y = 0 \]

[[_Emden, _Fowler]]

15166

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

15167

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +29 y = 0 \]

[[_Emden, _Fowler]]

15168

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15169

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15170

\[ {}4 x^{2} y^{\prime \prime }+37 y = 0 \]

[[_Emden, _Fowler]]

15171

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

15172

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -25 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15173

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

15174

\[ {}3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

15175

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15176

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15177

\[ {}x^{2} y^{\prime \prime }-11 y^{\prime } x +36 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15178

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

15179

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15180

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15189

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15190

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15191

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15192

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15193

\[ {}y^{\prime \prime }-9 y = 36 \]
i.c.

[[_2nd_order, _missing_x]]

15194

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -6 \,{\mathrm e}^{4 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15195

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 7 \,{\mathrm e}^{5 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15196

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 169 \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15197

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 10 x +12 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15199

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

15200

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

15201

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15202

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15203

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

15204

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

15205

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 22 x +24 \]

[[_2nd_order, _with_linear_symmetries]]

15206

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15207

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = x \]

[[_2nd_order, _with_linear_symmetries]]

15208

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

15209

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 4 x^{2}+2 x +3 \]

[[_2nd_order, _with_linear_symmetries]]

15210

\[ {}y^{\prime \prime }+9 y = 52 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

15211

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x} \]

[[_2nd_order, _with_linear_symmetries]]

15212

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 30 \,{\mathrm e}^{-4 x} \]

[[_2nd_order, _with_linear_symmetries]]

15213

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}} \]

[[_2nd_order, _missing_y]]

15214

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -5 \,{\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15215

\[ {}y^{\prime \prime }+9 y = 10 \cos \left (2 x \right )+15 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15216

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 25 \sin \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15217

\[ {}y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \]

[[_2nd_order, _missing_y]]

15218

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15219

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -4 \cos \left (x \right )+7 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15220

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -200 \]

[[_2nd_order, _missing_x]]

15221

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15222

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 18 x^{2}+3 x +4 \]

[[_2nd_order, _with_linear_symmetries]]

15223

\[ {}y^{\prime \prime }+9 y = 9 x^{4}-9 \]

[[_2nd_order, _linear, _nonhomogeneous]]

15224

\[ {}y^{\prime \prime }+9 y = x^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15225

\[ {}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15226

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15227

\[ {}y^{\prime \prime }+9 y = 54 x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15228

\[ {}y^{\prime \prime } = 6 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

15229

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15230

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left (12 x -4\right ) {\mathrm e}^{-5 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15231

\[ {}y^{\prime \prime }+9 y = 39 x \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15232

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -3 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

15233

\[ {}y^{\prime \prime }+4 y^{\prime } = 20 \]

[[_2nd_order, _missing_x]]

15234

\[ {}y^{\prime \prime }+4 y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

15235

\[ {}y^{\prime \prime }+9 y = 3 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15236

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 10 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

15237

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = \left (72 x^{2}-1\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15238

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 4 x \,{\mathrm e}^{6 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15239

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

15240

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{-5 x} \]

[[_2nd_order, _with_linear_symmetries]]

15241

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 24 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15242

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 8 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

15243

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15244

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15245

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 100 \]

[[_2nd_order, _missing_x]]

15246

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

15247

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 10 x^{2}+4 x +8 \]

[[_2nd_order, _with_linear_symmetries]]

15248

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15249

\[ {}y^{\prime \prime }+y = 6 \cos \left (x \right )-3 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15250

\[ {}y^{\prime \prime }+y = 6 \cos \left (2 x \right )-3 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15251

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15252

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15253

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{-7 x}+2 \,{\mathrm e}^{-7 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15254

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15255

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{-8 x} \]

[[_2nd_order, _with_linear_symmetries]]

15256

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

15257

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15258

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15259

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15260

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{4 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15261

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{2 x} \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15262

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = x^{3} \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15263

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{2} {\mathrm e}^{5 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15264

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15279

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15280

\[ {}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right )+3 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15281

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 5 \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15282

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 20 \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15283

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = \frac {5}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

15284

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {50}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

15285

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15286

\[ {}x^{2} y^{\prime \prime }-2 y = 15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15287

\[ {}3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y = 4 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

15288

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = \frac {10}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15289

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 6 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

15290

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 64 x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15291

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

15292

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15293

\[ {}y^{\prime \prime }+4 y = \csc \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15294

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 6 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

15295

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \left (24 x^{2}+2\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15296

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15297

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \sqrt {x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15298

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 12 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

15299

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15300

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

15301

\[ {}x^{2} y^{\prime \prime }-2 y = \frac {1}{x -2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15302

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15303

\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15304

\[ {}\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15305

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y = \frac {10}{x} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15306

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 12 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15313

\[ {}y^{\prime \prime }+36 y = 0 \]

[[_2nd_order, _missing_x]]

15314

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

[[_2nd_order, _missing_x]]

15315

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15316

\[ {}y^{\prime \prime }-36 y = 0 \]

[[_2nd_order, _missing_x]]

15317

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 0 \]

[[_2nd_order, _missing_x]]

15318

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_Emden, _Fowler]]

15319

\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]

[[_2nd_order, _missing_y]]

15321

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

15322

\[ {}y^{\prime \prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

15323

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

15324

\[ {}x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \]

[[_Emden, _Fowler]]

15326

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

15327

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

15329

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15330

\[ {}y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

15331

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -30 y = 0 \]

[[_Emden, _Fowler]]

15332

\[ {}y^{\prime \prime }+y^{\prime }-30 y = 0 \]

[[_2nd_order, _missing_x]]

15333

\[ {}16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15334

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

15336

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15337

\[ {}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15339

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]

[[_2nd_order, _missing_x]]

15340

\[ {}y^{\prime \prime }+20 y^{\prime }+100 y = 0 \]

[[_2nd_order, _missing_x]]

15341

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

[[_2nd_order, _missing_y]]

15342

\[ {}y^{\prime \prime }-5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15343

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15344

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15345

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15346

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

15347

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

15348

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15349

\[ {}y^{\prime \prime }+36 y = 6 \sec \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15350

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 18 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

15351

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

15352

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x -2 y = 10 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15353

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15355

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 6 \]

[[_2nd_order, _with_linear_symmetries]]

15356

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \frac {1}{x^{2}+1} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15357

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15358

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 x \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15361

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (x +1\right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15362

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15559

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15563

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15571

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

15572

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15573

\[ {}x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

[[_2nd_order, _missing_x]]

15574

\[ {}x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15575

\[ {}y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

[[_2nd_order, _missing_x]]

15578

\[ {}x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y = 0 \]

[[_Emden, _Fowler]]

15579

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +5 y = 0 \]

[[_Emden, _Fowler]]

15600

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15601

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15604

\[ {}t^{2} y^{\prime \prime }-12 y^{\prime } t +42 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15605

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15613

\[ {}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

[[_2nd_order, _missing_x]]

15622

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

15623

\[ {}y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

[[_2nd_order, _missing_x]]

15624

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -16 y = 0 \]

[[_Emden, _Fowler]]

15625

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

15626

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x \]

[[_2nd_order, _with_linear_symmetries]]

15627

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 2 \]

[[_2nd_order, _missing_x]]

15635

\[ {}y^{\prime \prime }+4 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15636

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15779

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15955

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

15956

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15957

\[ {}2 t^{2} y^{\prime \prime }-3 y^{\prime } t -3 y = 0 \]

[[_Emden, _Fowler]]

15958

\[ {}y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

15959

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15960

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15961

\[ {}3 t^{2} y^{\prime \prime }-5 y^{\prime } t -3 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15962

\[ {}t^{2} y^{\prime \prime }+7 y^{\prime } t -7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15963

\[ {}y^{\prime \prime }+y = 2 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15964

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

[[_2nd_order, _missing_x]]

15965

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

15966

\[ {}y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

[[_2nd_order, _missing_x]]

15967

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15978

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

15979

\[ {}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

15984

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

15985

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

15986

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15987

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

15988

\[ {}y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

[[_2nd_order, _missing_x]]

15989

\[ {}y^{\prime \prime }+5 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15990

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15991

\[ {}4 y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

15992

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

15993

\[ {}y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

15994

\[ {}y^{\prime \prime }+7 y = 0 \]

[[_2nd_order, _missing_x]]

15995

\[ {}4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

15996

\[ {}7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

15997

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15998

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

15999

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16000

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16001

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16002

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16003

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16004

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16005

\[ {}y^{\prime \prime }+36 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16006

\[ {}y^{\prime \prime }+100 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16007

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16008

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16009

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16010

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16011

\[ {}y^{\prime \prime }+y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16012

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16013

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16014

\[ {}y^{\prime \prime }-y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16015

\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16016

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16017

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

16018

\[ {}3 t^{2} y^{\prime \prime }-2 y^{\prime } t +2 y = 0 \]

[[_Emden, _Fowler]]

16019

\[ {}t^{2} y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_Emden, _Fowler]]

16020

\[ {}a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

16021

\[ {}y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

16022

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

16023

\[ {}y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

[[_2nd_order, _missing_x]]

16024

\[ {}y^{\prime \prime }-16 y = 0 \]

[[_2nd_order, _missing_x]]

16025

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16028

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16029

\[ {}y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

16030

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t} \]

[[_2nd_order, _with_linear_symmetries]]

16031

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t} \]

[[_2nd_order, _with_linear_symmetries]]

16032

\[ {}y^{\prime \prime }-y = 2 t -4 \]

[[_2nd_order, _with_linear_symmetries]]

16033

\[ {}y^{\prime \prime }-2 y^{\prime }+y = t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16034

\[ {}y^{\prime \prime }+2 y^{\prime } = 3-4 t \]

[[_2nd_order, _missing_y]]

16035

\[ {}y^{\prime \prime }+y = \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16036

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16037

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right )+t \]

[[_2nd_order, _linear, _nonhomogeneous]]

16038

\[ {}y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16039

\[ {}y^{\prime \prime } = 3 t^{4}-2 t \]

[[_2nd_order, _quadrature]]

16040

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16041

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -1 \]

[[_2nd_order, _missing_x]]

16042

\[ {}5 y^{\prime \prime }+y^{\prime }-4 y = -3 \]

[[_2nd_order, _missing_x]]

16043

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 32 t \]

[[_2nd_order, _with_linear_symmetries]]

16044

\[ {}16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t \]

[[_2nd_order, _with_linear_symmetries]]

16045

\[ {}y^{\prime \prime }+2 y^{\prime }+26 y = -338 t \]

[[_2nd_order, _with_linear_symmetries]]

16046

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16047

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16048

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16049

\[ {}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \]

[[_2nd_order, _missing_y]]

16050

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16051

\[ {}y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16052

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16053

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16054

\[ {}y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

16055

\[ {}y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16056

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16057

\[ {}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

16058

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

16059

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

16060

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

16061

\[ {}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \]

[[_2nd_order, _quadrature]]

16062

\[ {}y^{\prime \prime }+3 y^{\prime } = 18 \]
i.c.

[[_2nd_order, _missing_x]]

16063

\[ {}y^{\prime \prime }-y = 4 \]
i.c.

[[_2nd_order, _missing_x]]

16064

\[ {}y^{\prime \prime }-4 y = 32 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16065

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = -2 \]
i.c.

[[_2nd_order, _missing_x]]

16066

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 3 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16067

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 4 \]
i.c.

[[_2nd_order, _missing_x]]

16068

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = t \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16069

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = -1 \]
i.c.

[[_2nd_order, _missing_x]]

16070

\[ {}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t \]
i.c.

[[_2nd_order, _missing_y]]

16071

\[ {}y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _missing_y]]

16072

\[ {}y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

16073

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _missing_y]]

16074

\[ {}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _missing_y]]

16075

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16077

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16083

\[ {}y^{\prime \prime }+y^{\prime }-2 y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16084

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16085

\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16086

\[ {}y^{\prime \prime }+4 y = 1 \]

[[_2nd_order, _missing_x]]

16087

\[ {}y^{\prime \prime }+16 y^{\prime } = t \]

[[_2nd_order, _missing_y]]

16088

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = {\mathrm e}^{3 t} \]

[[_2nd_order, _with_linear_symmetries]]

16089

\[ {}y^{\prime \prime }+16 y = 2 \cos \left (4 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16090

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 2 t \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16091

\[ {}y^{\prime \prime }+\frac {y}{4} = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16092

\[ {}y^{\prime \prime }+16 y = \csc \left (4 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16093

\[ {}y^{\prime \prime }+16 y = \cot \left (4 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16094

\[ {}y^{\prime \prime }+2 y^{\prime }+50 y = {\mathrm e}^{-t} \csc \left (7 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16095

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = {\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16096

\[ {}y^{\prime \prime }-2 y^{\prime }+26 y = {\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16097

\[ {}y^{\prime \prime }+12 y^{\prime }+37 y = {\mathrm e}^{-6 t} \csc \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16098

\[ {}y^{\prime \prime }-6 y^{\prime }+34 y = {\mathrm e}^{3 t} \tan \left (5 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16099

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = {\mathrm e}^{5 t} \cot \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16100

\[ {}y^{\prime \prime }-12 y^{\prime }+37 y = {\mathrm e}^{6 t} \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16101

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 t} \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16102

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16103

\[ {}y^{\prime \prime }-25 y = \frac {1}{1-{\mathrm e}^{5 t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16104

\[ {}y^{\prime \prime }-y = 2 \sinh \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16105

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16106

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16107

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{4}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16108

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 t}}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16109

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \ln \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16110

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{t}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16111

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{-2 t} \sqrt {-t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16112

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \sqrt {-t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16113

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 t} \ln \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16114

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 t} \arctan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16115

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16116

\[ {}y^{\prime \prime }+y = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16117

\[ {}y^{\prime \prime }+9 y = \tan \left (3 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16118

\[ {}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16119

\[ {}y^{\prime \prime }+9 y = \tan \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16120

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16121

\[ {}y^{\prime \prime }+16 y = \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16122

\[ {}y^{\prime \prime }+4 y = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16123

\[ {}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \tan \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16124

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16125

\[ {}y^{\prime \prime }+9 y = \frac {\csc \left (3 t \right )}{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16126

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right )^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16127

\[ {}y^{\prime \prime }-16 y = 16 t \,{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16128

\[ {}y^{\prime \prime }+y = \tan \left (t \right )^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16129

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right )+\tan \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16130

\[ {}y^{\prime \prime }+9 y = \csc \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16131

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 65 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16132

\[ {}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16133

\[ {}t^{2} y^{\prime \prime }+y^{\prime } t +4 y = t \]

[[_2nd_order, _with_linear_symmetries]]

16134

\[ {}t^{2} y^{\prime \prime }-4 y^{\prime } t -6 y = 2 \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16135

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16136

\[ {}y^{\prime \prime }+4 y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16138

\[ {}t^{2} y^{\prime \prime }-4 y^{\prime } t +\left (t^{2}+6\right ) y = t^{3}+2 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16140

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = -t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16142

\[ {}4 t^{2} y^{\prime \prime }+4 y^{\prime } t +\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16218

\[ {}4 x^{2} y^{\prime \prime }-8 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16219

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16220

\[ {}2 x^{2} y^{\prime \prime }-8 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

16221

\[ {}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0 \]

[[_Emden, _Fowler]]

16222

\[ {}4 x^{2} y^{\prime \prime }+17 y = 0 \]

[[_Emden, _Fowler]]

16223

\[ {}9 x^{2} y^{\prime \prime }-9 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

16224

\[ {}2 x^{2} y^{\prime \prime }-2 y^{\prime } x +20 y = 0 \]

[[_Emden, _Fowler]]

16225

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

16226

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

16227

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

16228

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

16229

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

16238

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = \frac {1}{x^{5}} \]

[[_2nd_order, _with_linear_symmetries]]

16239

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

16240

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \frac {1}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

16241

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = \frac {1}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

16242

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

16243

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

16244

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 8 \]

[[_2nd_order, _with_linear_symmetries]]

16245

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +36 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16248

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16249

\[ {}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

16250

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16251

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16256

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = \frac {1}{x^{2}} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16257

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16258

\[ {}4 x^{2} y^{\prime \prime }+y = x^{3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16259

\[ {}9 x^{2} y^{\prime \prime }+27 y^{\prime } x +10 y = \frac {1}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16260

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

16261

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16262

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16267

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16268

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16269

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16270

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16271

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16272

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16273

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16274

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16275

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16276

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16277

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

16284

\[ {}6 x^{2} y^{\prime \prime }+5 y^{\prime } x -y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16336

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

16337

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

16338

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

16341

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

16342

\[ {}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

16343

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16344

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

16345

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

[[_2nd_order, _missing_x]]

16346

\[ {}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

16347

\[ {}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

16348

\[ {}20 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

16349

\[ {}12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16353

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = -t \]

[[_2nd_order, _with_linear_symmetries]]

16354

\[ {}y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

[[_2nd_order, _missing_y]]

16355

\[ {}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

[[_2nd_order, _missing_y]]

16356

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16357

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16358

\[ {}y^{\prime \prime }-2 y^{\prime } = \frac {1}{1+{\mathrm e}^{2 t}} \]

[[_2nd_order, _missing_y]]

16359

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

16360

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

16361

\[ {}y^{\prime \prime }+9 y^{\prime }+20 y = -2 t \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16362

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16367

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16368

\[ {}y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16369

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16370

\[ {}y^{\prime \prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16371

\[ {}y^{\prime \prime }-4 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16372

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16373

\[ {}y^{\prime \prime }+9 y = \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16374

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16375

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16376

\[ {}y^{\prime \prime }+y = \csc \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16377

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16378

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16379

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16380

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16381

\[ {}y^{\prime \prime }-2 y^{\prime } t +t^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16382

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

16383

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

16384

\[ {}t^{2} y^{\prime \prime }-5 y^{\prime } t +5 y = 0 \]

[[_Emden, _Fowler]]

16385

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

16386

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16387

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16388

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

16389

\[ {}5 x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

16390

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

16391

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 8 x \]

[[_2nd_order, _with_linear_symmetries]]

16401

\[ {}4 x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16402

\[ {}9 x^{\prime \prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16403

\[ {}x^{\prime \prime }+64 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16404

\[ {}x^{\prime \prime }+100 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16405

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16406

\[ {}x^{\prime \prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16407

\[ {}x^{\prime \prime }+16 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16408

\[ {}x^{\prime \prime }+256 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16409

\[ {}x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16410

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16411

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16412

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16413

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16414

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16415

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16416

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16417

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16419

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16420

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ -t +1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16421

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16422

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16423

\[ {}x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16424

\[ {}x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16425

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16438

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

[[_2nd_order, _missing_x]]

16439

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

[[_2nd_order, _missing_x]]

16440

\[ {}x^{\prime \prime }+16 x = t \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16441

\[ {}x^{\prime \prime }+x = {\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

16684

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16687

\[ {}\left (x -1\right ) y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

16689

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16690

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \]

[[_2nd_order, _missing_x]]

16695

\[ {}y^{\prime \prime } \left (x +2\right )^{5} = 1 \]
i.c.

[[_2nd_order, _quadrature]]

16696

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

16697

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

16698

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

16699

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

16700

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

[[_2nd_order, _missing_y]]

16701

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

[[_2nd_order, _missing_y]]

16713

\[ {}y^{\prime \prime }+y^{\prime }+2 = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16730

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

16731

\[ {}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

[[_2nd_order, _missing_x]]

16733

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16734

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16736

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

16738

\[ {}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

16741

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16742

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16752

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 \]

[[_2nd_order, _missing_x]]

16753

\[ {}y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2} \]

[[_2nd_order, _missing_y]]

16754

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

16755

\[ {}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

[[_2nd_order, _missing_y]]

16756

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16757

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

16758

\[ {}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]

[[_2nd_order, _missing_y]]

16759

\[ {}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]

[[_2nd_order, _missing_y]]

16760

\[ {}y^{\prime \prime }+25 y = \cos \left (5 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16761

\[ {}y^{\prime \prime }+y = \sin \left (x \right )-\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16762

\[ {}y^{\prime \prime }+16 y = \sin \left (4 x +\alpha \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16763

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16764

\[ {}y^{\prime \prime }-4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16765

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = {\mathrm e}^{-3 x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16766

\[ {}y^{\prime \prime }+k^{2} y = k \sin \left (k x +\alpha \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16767

\[ {}y^{\prime \prime }+k^{2} y = k \]

[[_2nd_order, _missing_x]]

16788

\[ {}y^{\prime \prime }+2 y^{\prime }+y = -2 \]

[[_2nd_order, _missing_x]]

16789

\[ {}y^{\prime \prime }+2 y^{\prime } = -2 \]

[[_2nd_order, _missing_x]]

16790

\[ {}y^{\prime \prime }+9 y = 9 \]

[[_2nd_order, _missing_x]]

16796

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16797

\[ {}y^{\prime \prime }+8 y^{\prime } = 8 x \]

[[_2nd_order, _missing_y]]

16798

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

16799

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 8 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

16800

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

16801

\[ {}7 y^{\prime \prime }-y^{\prime } = 14 x \]

[[_2nd_order, _missing_y]]

16802

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

16803

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 10 \left (1-x \right ) {\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16804

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x +1 \]

[[_2nd_order, _with_linear_symmetries]]

16805

\[ {}y^{\prime \prime }+y^{\prime }+y = \left (x^{2}+x \right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16806

\[ {}y^{\prime \prime }+4 y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16807

\[ {}y^{\prime \prime }+y = 4 \cos \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

16808

\[ {}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \sin \left (n x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16809

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16810

\[ {}y^{\prime \prime }+a^{2} y = 2 \cos \left (m x \right )+3 \sin \left (m x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16811

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

16812

\[ {}y^{\prime \prime }+2 y^{\prime } = 4 \,{\mathrm e}^{x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \]

[[_2nd_order, _missing_y]]

16813

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 10 \,{\mathrm e}^{-2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16814

\[ {}4 y^{\prime \prime }+8 y^{\prime } = \sin \left (x \right ) x \]

[[_2nd_order, _missing_y]]

16815

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16816

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{2} {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16817

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left (x^{2}+x \right ) {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16820

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16822

\[ {}y^{\prime \prime }+y = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16823

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16827

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \left (\sin \left (x \right )+2 \cos \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16828

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{x}+{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16829

\[ {}y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x} \]

[[_2nd_order, _missing_y]]

16830

\[ {}y^{\prime \prime }-y = x +\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16831

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (1+\sin \left (x \right )\right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16834

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16835

\[ {}y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2} \]

[[_2nd_order, _missing_y]]

16836

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x -2 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

16837

\[ {}y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

16838

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2+{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16839

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left (5 x +4\right ) {\mathrm e}^{x}+{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16840

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x}+17 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16841

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 5 \,{\mathrm e}^{x} \cosh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16842

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16844

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \]

[[_2nd_order, _missing_y]]

16846

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 10 \sin \left (x \right )+17 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16847

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

16848

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 2 x +{\mathrm e}^{-x}-2 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16849

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{x}+4 \sin \left (2 x \right )+2 \cos \left (x \right )^{2}-1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

16850

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 6 x \,{\mathrm e}^{-x} \left (1-{\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16851

\[ {}y^{\prime \prime }+y = \cos \left (2 x \right )^{2}+\sin \left (\frac {x}{2}\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16852

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 1+8 \cos \left (x \right )+{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16853

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (\frac {x}{2}\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16854

\[ {}y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

16855

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \left (1-2 \sin \left (x \right )^{2}\right )+10 x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

16856

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 x +\sin \left (x \right )+\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16857

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1+2 \cos \left (x \right )+\cos \left (2 x \right )-\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16858

\[ {}y^{\prime \prime }+y^{\prime }+y+1 = \sin \left (x \right )+x +x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16859

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 18 \,{\mathrm e}^{-3 x}+8 \sin \left (x \right )+6 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16860

\[ {}y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

16862

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16867

\[ {}y^{\prime \prime }+y = 2-2 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16868

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 9 x^{2}-12 x +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16869

\[ {}y^{\prime \prime }+9 y = 36 \,{\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16870

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16871

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \left (12 x -7\right ) {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16872

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _missing_y]]

16873

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16874

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16875

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16876

\[ {}y^{\prime \prime }+y = 4 \cos \left (x \right ) x \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16877

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16878

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 16 \,{\mathrm e}^{-x}+9 x -6 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16879

\[ {}y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \]
i.c.

[[_2nd_order, _missing_y]]

16880

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16885

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16886

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \cos \left (2 x \right )+\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16887

\[ {}y^{\prime \prime }-y = 1 \]

[[_2nd_order, _missing_x]]

16888

\[ {}y^{\prime \prime }-y = -2 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16895

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16896

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16897

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler]]

16898

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

16899

\[ {}\left (x +2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16900

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16905

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = x \left (6-\ln \left (x \right )\right ) \]

[[_2nd_order, _with_linear_symmetries]]

16906

\[ {}x^{2} y^{\prime \prime }-2 y = \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16907

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = -\frac {16 \ln \left (x \right )}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16908

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -2 y = x^{2}-2 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

16909

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16910

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 2 \ln \left (x \right )^{2}+12 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16911

\[ {}\left (x +1\right )^{3} y^{\prime \prime }+3 \left (x +1\right )^{2} y^{\prime }+\left (x +1\right ) y = 6 \ln \left (x +1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16912

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

16913

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16914

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0 \]

[_Jacobi]

16915

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (x +1\right ) y^{\prime }+6 y = 6 \]

[[_2nd_order, _with_linear_symmetries]]

16926

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16927

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _missing_y]]

16928

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16929

\[ {}y^{\prime \prime }+y = \frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16930

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16931

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16932

\[ {}y^{\prime \prime }+y = \frac {2}{\sin \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16933

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \]

[[_2nd_order, _missing_y]]

16935

\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime } = 4 x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _missing_y]]

16936

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1 \]

[[_2nd_order, _missing_y]]

16938

\[ {}x y^{\prime \prime }+\left (2 x -1\right ) y^{\prime } = -4 x^{2} \]

[[_2nd_order, _missing_y]]

16942

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {1}{x^{2}+1} \]
i.c.

[[_2nd_order, _missing_y]]

16948

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

[[_2nd_order, _missing_x]]

16949

\[ {}x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

[[_2nd_order, _missing_x]]

16950

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]

[[_2nd_order, _missing_x]]

16958

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16959

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16960

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16963

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16964

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16965

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16966

\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16967

\[ {}y^{\prime \prime }+\alpha ^{2} y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

16968

\[ {}y^{\prime \prime }+y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

16969

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16970

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16973

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

16995

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16999

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17002

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17003

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \pi ^{2}-x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

17004

\[ {}y^{\prime \prime }-4 y = \cos \left (\pi x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17005

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \arcsin \left (\sin \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17006

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17329

\[ {}a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y = d \]

[[_2nd_order, _with_linear_symmetries]]

17330

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17331

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17332

\[ {}y^{\prime \prime }+y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17333

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17334

\[ {}y^{\prime \prime }-y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17341

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\frac {\alpha \left (1+\alpha \right ) \mu ^{2} y}{-x^{2}+1} = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17343

\[ {}t^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17345

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

17346

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

17347

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17349

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

17361

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

17362

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

17363

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

17364

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

17365

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

17366

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

17367

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

17368

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

17369

\[ {}6 y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

17370

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

17371

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

[[_2nd_order, _missing_x]]

17372

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

17373

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

17374

\[ {}4 y^{\prime \prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

17375

\[ {}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

17376

\[ {}y^{\prime \prime }-4 y^{\prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

17377

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

17378

\[ {}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

17379

\[ {}y^{\prime \prime }-9 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

17380

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

17381

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

17382

\[ {}9 y^{\prime \prime }-24 y^{\prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

17383

\[ {}4 y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

17384

\[ {}4 y^{\prime \prime }+9 y^{\prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

17385

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

17386

\[ {}y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

17387

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17388

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17389

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17390

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17391

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17392

\[ {}6 y^{\prime \prime }-5 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17393

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17394

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17395

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17396

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17397

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17398

\[ {}y^{\prime \prime }+6 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17399

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17400

\[ {}2 y^{\prime \prime }+y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17401

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17402

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17403

\[ {}4 y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17404

\[ {}a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y = 0 \]

[[_Emden, _Fowler]]

17405

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17406

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17407

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +\frac {5 y}{4} = 0 \]

[[_Emden, _Fowler]]

17408

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x -6 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17409

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17410

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

17411

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

17412

\[ {}2 x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler]]

17413

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

17414

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +17 y = 0 \]
i.c.

[[_Emden, _Fowler]]

17415

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]
i.c.

[[_Emden, _Fowler]]

17416

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

17417

\[ {}y^{\prime \prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17418

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17419

\[ {}m y^{\prime \prime }+k y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17420

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 3 \,{\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

17421

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17422

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = -3 t \,{\mathrm e}^{-t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17423

\[ {}y^{\prime \prime }+2 y^{\prime } = 3+4 \sin \left (2 t \right ) \]

[[_2nd_order, _missing_y]]

17424

\[ {}y^{\prime \prime }+9 y = t^{2} {\mathrm e}^{3 t}+6 \]

[[_2nd_order, _linear, _nonhomogeneous]]

17425

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

17426

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 2 \,{\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

17427

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

17428

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

17429

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

17430

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = t^{2}+3 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17431

\[ {}y^{\prime \prime }+y = 3 \sin \left (2 t \right )+t \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17432

\[ {}u^{\prime \prime }+w_{0}^{2} u = \cos \left (w t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17433

\[ {}y^{\prime \prime }+y^{\prime }+4 y = 2 \sinh \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17434

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \cosh \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17435

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 2 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17436

\[ {}y^{\prime \prime }+4 y = t^{2}+3 \,{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17437

\[ {}y^{\prime \prime }-2 y^{\prime }+y = t \,{\mathrm e}^{t}+4 \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17438

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 3 t \,{\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17439

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17440

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-t} \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17441

\[ {}y^{\prime \prime }+3 y^{\prime } = 2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right ) \]

[[_2nd_order, _missing_y]]

17442

\[ {}y^{\prime \prime }+y = t \left (1+\sin \left (t \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17443

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{t} \cos \left (2 t \right )+{\mathrm e}^{2 t} \left (3 t +4\right ) \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17444

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{-t} t^{2} \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17445

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 t^{2}+4 t \,{\mathrm e}^{2 t}+t \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17446

\[ {}y^{\prime \prime }+4 y = t^{2} \sin \left (2 t \right )+\left (6 t +7\right ) \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17447

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{t} \left (t^{2}+1\right ) \sin \left (2 t \right )+3 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17448

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 t \,{\mathrm e}^{-t} \cos \left (2 t \right )-2 t \,{\mathrm e}^{-2 t} \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17449

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 2 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

17450

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

17451

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17452

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 3 x^{2}+2 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

17453

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17454

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t \le \pi \\ \pi \,{\mathrm e}^{-t +\pi } & \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17455

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0\le t \le \frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17456

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} A t & 0\le t \le \pi \\ A \left (2 \pi -t \right ) & \pi <t \le 2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17457

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y = 2 \cos \left (w t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17458

\[ {}y^{\prime \prime }+y = 2 \cos \left (w t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17459

\[ {}y^{\prime \prime }+y = 3 \cos \left (w t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17460

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (\frac {t}{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17461

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17462

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (6 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17465

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

17466

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

17467

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

17468

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

17469

\[ {}y^{\prime \prime }+y = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17470

\[ {}y^{\prime \prime }+4 y = 3 \sec \left (2 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17471

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17472

\[ {}y^{\prime \prime }+4 y = 2 \csc \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17473

\[ {}4 y^{\prime \prime }+y = 2 \sec \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17474

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17475

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17476

\[ {}y^{\prime \prime }+4 y = g \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17477

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3} \]

[[_2nd_order, _with_linear_symmetries]]

17478

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

17479

\[ {}\left (-t +1\right ) y^{\prime \prime }+y^{\prime } t -y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

17480

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 3 x^{{3}/{2}} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17481

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = g \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

17482

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17483

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17484

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17485

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } t +2 y = 4 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

17486

\[ {}t^{2} y^{\prime \prime }+7 y^{\prime } t +5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17487

\[ {}y^{\prime \prime }+y = g \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17671

\[ {}y^{\prime \prime } = \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

17774

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

[_Lienard]

17779

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

17780

\[ {}y^{\prime \prime }+\frac {x y^{\prime }}{1-x}-\frac {y}{1-x} = x -1 \]

[[_2nd_order, _with_linear_symmetries]]

17783

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

17785

\[ {}y^{\prime \prime }+p_{1} y^{\prime }+p_{2} y = 0 \]

[[_2nd_order, _missing_x]]

17786

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17792

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

17794

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

17795

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{x}+{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17798

\[ {}y^{\prime \prime }+4 y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17799

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17800

\[ {}y^{\prime \prime }-y = \frac {{\mathrm e}^{x}-{\mathrm e}^{-x}}{{\mathrm e}^{x}+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17801

\[ {}y^{\prime \prime }-2 y = 4 x^{2} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17802

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17803

\[ {}y^{\prime \prime }+9 y = \ln \left (2 \sin \left (\frac {x}{2}\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17804

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {n \left (n +1\right ) y}{x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17805

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

17806

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

17807

\[ {}x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17809

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17811

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

[_Lienard]

17813

\[ {}x y^{\prime \prime }-y^{\prime }-x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17814

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17815

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17838

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

17839

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

17879

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

17971

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

17992

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

17999

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

18027

\[ {}x y^{\prime \prime }-y^{\prime } = 3 x^{2} \]

[[_2nd_order, _missing_y]]

18028

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

18029

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x \]

[[_2nd_order, _with_linear_symmetries]]

18030

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y x = 1 \]

[[_2nd_order, _with_linear_symmetries]]

18031

\[ {}y^{\prime \prime }-2 y^{\prime } = 6 \]

[[_2nd_order, _missing_x]]

18032

\[ {}y^{\prime \prime }-2 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18033

\[ {}y^{\prime \prime } = {\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

18034

\[ {}y^{\prime \prime }-2 y^{\prime } = 4 \]

[[_2nd_order, _missing_x]]

18035

\[ {}y^{\prime \prime }-y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18036

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18037

\[ {}y^{\prime \prime }+2 y^{\prime } = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

18038

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x -5 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18039

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18040

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

18041

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18042

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18043

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

18044

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

18045

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18046

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18047

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18049

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18062

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

18063

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

18064

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

[_Laguerre]

18066

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

18067

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

18068

\[ {}y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

18069

\[ {}2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

18070

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

18071

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

18072

\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

18073

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

18074

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

18075

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

18076

\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

18077

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

18078

\[ {}y^{\prime \prime } = 4 y \]

[[_2nd_order, _missing_x]]

18079

\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

[[_2nd_order, _missing_x]]

18080

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

18081

\[ {}16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

18082

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

18083

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

18084

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18085

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18086

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18087

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18088

\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18089

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18090

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

18091

\[ {}2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

18092

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

18093

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

[[_Emden, _Fowler]]

18094

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18095

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18096

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

18097

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18098

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18099

\[ {}x y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }+x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18101

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

18102

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18103

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

[[_2nd_order, _with_linear_symmetries]]

18104

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

[[_2nd_order, _with_linear_symmetries]]

18105

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

18106

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18107

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18108

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

[[_2nd_order, _missing_y]]

18109

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

18110

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18111

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

[[_2nd_order, _missing_y]]

18112

\[ {}y^{\prime \prime }+k^{2} y = \sin \left (b x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18113

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

[[_2nd_order, _linear, _nonhomogeneous]]

18114

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18115

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

18116

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

18117

\[ {}y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18118

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18119

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18120

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18121

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

18122

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18123

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18124

\[ {}y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18125

\[ {}y^{\prime \prime }+y = \cot \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18126

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

18127

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18128

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18129

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18130

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = \left (x^{2}-1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

18131

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (x +1\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18132

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

18133

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

18134

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

18158

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

18159

\[ {}y^{\prime \prime }-y = x^{2} {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18160

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 10 x^{3} {\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18161

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

18162

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

18163

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

18164

\[ {}y^{\prime \prime }-y^{\prime }+y = x^{3}-3 x^{2}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

18166

\[ {}4 y^{\prime \prime }+y = x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18169

\[ {}y^{\prime \prime }+y^{\prime }-y = -x^{4}+3 x \]

[[_2nd_order, _linear, _nonhomogeneous]]

18170

\[ {}y^{\prime \prime }+y = x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18173

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18174

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = {\mathrm e}^{2 x} \left (x^{3}-5 x^{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18175

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-2 x} x^{2}+3 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18184

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18192

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18291

\[ {}t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x = 0 \]

[[_Emden, _Fowler]]

18294

\[ {}t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18295

\[ {}x^{\prime \prime }-5 x^{\prime }+6 x = 0 \]

[[_2nd_order, _missing_x]]

18296

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

[[_2nd_order, _missing_x]]

18297

\[ {}x^{\prime \prime }-4 x^{\prime }+5 x = 0 \]

[[_2nd_order, _missing_x]]

18298

\[ {}x^{\prime \prime }+3 x^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

18299

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18300

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18301

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18302

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18303

\[ {}x^{\prime \prime }-x = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

18304

\[ {}x^{\prime \prime }-x = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

18305

\[ {}x^{\prime \prime }+2 x^{\prime }+4 x = {\mathrm e}^{t} \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

18306

\[ {}x^{\prime \prime }-x^{\prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

18307

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = t \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

18308

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

18343

\[ {}\theta ^{\prime \prime } = -p^{2} \theta \]

[[_2nd_order, _missing_x]]

18358

\[ {}\theta ^{\prime \prime }-p^{2} \theta = 0 \]

[[_2nd_order, _missing_x]]

18359

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

18360

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

[[_2nd_order, _missing_x]]

18361

\[ {}r^{\prime \prime }-a^{2} r = 0 \]

[[_2nd_order, _missing_x]]

18363

\[ {}v^{\prime \prime }-6 v^{\prime }+13 v = {\mathrm e}^{-2 u} \]

[[_2nd_order, _with_linear_symmetries]]

18364

\[ {}y^{\prime \prime }+4 y^{\prime }-y = \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18365

\[ {}y^{\prime \prime }+3 y = \sin \left (x \right )+\frac {\sin \left (3 x \right )}{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18373

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18377

\[ {}y^{\prime \prime } = -m^{2} y \]

[[_2nd_order, _missing_x]]

18380

\[ {}x y^{\prime \prime }+2 y^{\prime } = y x \]

[[_2nd_order, _with_linear_symmetries]]

18384

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = \frac {1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

18385

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

18386

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18393

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18394

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

18396

\[ {}v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18433

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

18434

\[ {}y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

18442

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

18444

\[ {}y^{\prime \prime }-4 y^{\prime }+2 y = x \]

[[_2nd_order, _with_linear_symmetries]]

18445

\[ {}y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

18448

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

18449

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

18450

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18452

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18456

\[ {}e y^{\prime \prime } = \frac {P \left (\frac {L}{2}-x \right )}{2} \]

[[_2nd_order, _quadrature]]

18457

\[ {}e y^{\prime \prime } = \frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

18458

\[ {}e y^{\prime \prime } = -\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \]

[[_2nd_order, _quadrature]]

18459

\[ {}e y^{\prime \prime } = -P \left (L -x \right ) \]

[[_2nd_order, _quadrature]]

18460

\[ {}e y^{\prime \prime } = -P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

18461

\[ {}e y^{\prime \prime } = P \left (-y+a \right ) \]

[[_2nd_order, _missing_x]]

18463

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y = x \]

[[_2nd_order, _with_linear_symmetries]]

18467

\[ {}x y^{\prime \prime }+2 y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

18468

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

18469

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18470

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18472

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18473

\[ {}\left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (1+6 x \right ) y^{\prime }+6 y = \sin \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18476

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]

[[_2nd_order, _quadrature]]

18477

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

18478

\[ {}y^{\prime \prime } = -a^{2} y \]

[[_2nd_order, _missing_x]]

18483

\[ {}x y^{\prime \prime }+3 y^{\prime } = 3 x \]

[[_2nd_order, _missing_y]]

18484

\[ {}x = y^{\prime \prime }+y^{\prime } \]

[[_2nd_order, _missing_y]]

18487

\[ {}V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18488

\[ {}V^{\prime \prime }+\frac {V^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18502

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18503

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18504

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

18645

\[ {}y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

[[_2nd_order, _missing_x]]

18646

\[ {}y^{\prime \prime }-m^{2} y = 0 \]

[[_2nd_order, _missing_x]]

18647

\[ {}2 y^{\prime \prime }+5 y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

18648

\[ {}9 y^{\prime \prime }+18 y^{\prime }-16 y = 0 \]

[[_2nd_order, _missing_x]]

18651

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

18654

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

18655

\[ {}y^{\prime \prime }-y = 2+5 x \]

[[_2nd_order, _with_linear_symmetries]]

18656

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

18660

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{\frac {5 x}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

18664

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18665

\[ {}y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18668

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18669

\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{3 x}+{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18670

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

18671

\[ {}y^{\prime \prime }-y = \cos \left (x \right ) x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18675

\[ {}y^{\prime \prime }+4 y = \sin \left (3 x \right )+{\mathrm e}^{x}+x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18676

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x +{\mathrm e}^{m x} \]

[[_2nd_order, _with_linear_symmetries]]

18677

\[ {}y^{\prime \prime }-a^{2} y = {\mathrm e}^{a x}+{\mathrm e}^{n x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18683

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18684

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18685

\[ {}y^{\prime \prime }+n^{2} y = {\mathrm e}^{x} x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18689

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18691

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18695

\[ {}y^{\prime \prime }-y = \sin \left (x \right ) x +\left (x^{2}+1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18696

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = {\mathrm e}^{x} \cos \left (2 x \right )+\cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18698

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 20 x \]

[[_2nd_order, _with_linear_symmetries]]

18701

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 2 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

18702

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

18705

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y = x^{4} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18706

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

18707

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -20 y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

18708

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18710

\[ {}\left (2 x -1\right )^{3} y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18712

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18714

\[ {}\left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

18718

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18719

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{m} \]

[[_2nd_order, _with_linear_symmetries]]

18722

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (1-x \right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18723

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y = n^{2} x^{m} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18724

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18726

\[ {}x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

[[_2nd_order, _linear, _nonhomogeneous]]

18727

\[ {}x y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18734

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

18735

\[ {}y^{\prime \prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

18752

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

18761

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

[[_2nd_order, _missing_y]]

18768

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

18771

\[ {}y^{\prime \prime } = \frac {a}{x} \]

[[_2nd_order, _quadrature]]

18774

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

18777

\[ {}a y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

18781

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18782

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+y x = x \]

[[_2nd_order, _with_linear_symmetries]]

18783

\[ {}\left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18784

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18785

\[ {}3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18788

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18789

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18790

\[ {}x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18791

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18793

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18795

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

[[_2nd_order, _with_linear_symmetries]]

18796

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18797

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18798

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18801

\[ {}y^{\prime \prime }+4 y^{\prime } x +4 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18803

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _with_linear_symmetries]]

18807

\[ {}y^{\prime \prime }+y^{\prime } x -y = f \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

18808

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

18809

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18810

\[ {}\left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18813

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18823

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = \frac {1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

18824

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18937

\[ {}y^{\prime \prime }-n^{2} y = 0 \]

[[_2nd_order, _missing_x]]

18939

\[ {}2 x^{\prime \prime }+5 x^{\prime }-12 x = 0 \]

[[_2nd_order, _missing_x]]

18940

\[ {}y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

[[_2nd_order, _missing_x]]

18941

\[ {}9 x^{\prime \prime }+18 x^{\prime }-16 x = 0 \]

[[_2nd_order, _missing_x]]

18943

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

18951

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

18952

\[ {}y^{\prime \prime }-y = 2+5 x \]

[[_2nd_order, _with_linear_symmetries]]

18953

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 15 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

18954

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18955

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \,{\mathrm e}^{\frac {5 x}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

18956

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

18957

\[ {}y^{\prime \prime }+2 p y^{\prime }+\left (p^{2}+q^{2}\right ) y = {\mathrm e}^{k x} \]

[[_2nd_order, _with_linear_symmetries]]

18958

\[ {}y^{\prime \prime }+9 y = \sin \left (2 x \right )+\cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18959

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right )+\cos \left (b x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18960

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{x}+\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18962

\[ {}y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18963

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18969

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18970

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18971

\[ {}y^{\prime \prime }-y = \cosh \left (x \right ) \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18974

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \left (x -1\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18975

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \cos \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

18978

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18979

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 8 x^{2} {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18980

\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x}+\cos \left (x \right )+x^{3}+{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18984

\[ {}y^{\prime \prime }+y = 3 \cos \left (x \right )^{2}+2 \sin \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18987

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y+37 \sin \left (3 x \right ) = 0 \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

19093

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler]]

19094

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 2 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

19101

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

19103

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19104

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19105

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

19106

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

19107

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y = x^{4} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19108

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19109

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{m} \]

[[_2nd_order, _with_linear_symmetries]]

19110

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x = \ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

19111

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19112

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y = x \]

[[_2nd_order, _with_linear_symmetries]]

19116

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -20 y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19119

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

19120

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y = x^{2} \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19123

\[ {}\left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5+2 x \right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19124

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime } = \left (2 x +3\right ) \left (2 x +4\right ) \]

[[_2nd_order, _missing_y]]

19125

\[ {}x y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19127

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19131

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19132

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19133

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19134

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+\left (6 x +3\right ) y^{\prime }+2 y = \left (x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19136

\[ {}\left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19141

\[ {}x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

[[_2nd_order, _linear, _nonhomogeneous]]

19144

\[ {}y^{\prime \prime } = x +\sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

19145

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

19146

\[ {}y^{\prime \prime } \cos \left (x \right )^{2} = 1 \]

[[_2nd_order, _quadrature]]

19148

\[ {}y^{\prime \prime } = \frac {a}{x} \]

[[_2nd_order, _quadrature]]

19150

\[ {}y^{\prime \prime } \sqrt {a^{2}+x^{2}} = x \]

[[_2nd_order, _quadrature]]

19151

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

19152

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

19154

\[ {}y^{\prime \prime }-a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

19158

\[ {}y^{\prime \prime } = y^{\prime } x \]

[[_2nd_order, _missing_y]]

19160

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

19161

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

19163

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

[[_2nd_order, _missing_y]]

19164

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a x = 0 \]

[[_2nd_order, _missing_y]]

19165

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = a x \]

[[_2nd_order, _missing_y]]

19169

\[ {}x y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

19170

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

[[_2nd_order, _missing_y]]

19178

\[ {}a y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

19200

\[ {}y^{\prime \prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

19205

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19208

\[ {}{\mathrm e}^{x} \left (x y^{\prime \prime }-y^{\prime }\right ) = x^{3} \]

[[_2nd_order, _missing_y]]

19209

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

19213

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+y x = x \]

[[_2nd_order, _with_linear_symmetries]]

19214

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

[_Laguerre]

19215

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime } = y+{\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19216

\[ {}\left (x +1\right ) y^{\prime \prime }-2 \left (x +3\right ) y^{\prime }+\left (x +5\right ) y = {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19217

\[ {}\left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19218

\[ {}y^{\prime \prime }+y^{\prime } x -y = X \]

[[_2nd_order, _with_linear_symmetries]]

19224

\[ {}y^{\prime \prime }+4 y^{\prime } x +4 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19225

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19226

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

[[_2nd_order, _with_linear_symmetries]]

19227

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19228

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

19230

\[ {}x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19231

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = \sec \left (x \right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19232

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19233

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19234

\[ {}y^{\prime \prime }+2 n \cot \left (n x \right ) y^{\prime }+\left (m^{2}-n^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19235

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19236

\[ {}x^{2} y^{\prime \prime }-2 n x y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19237

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19239

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19240

\[ {}\left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19241

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +m^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19244

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19247

\[ {}3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19248

\[ {}x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-2 y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19249

\[ {}x^{2} y^{\prime \prime }+y^{\prime }-\left (x^{2}+1\right ) y = {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19250

\[ {}\left (x +2\right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y = \left (x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

19251

\[ {}y^{\prime \prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

19252

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19253

\[ {}y^{\prime \prime }+4 y = 4 \tan \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19254

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19255

\[ {}y^{\prime \prime }-y = \frac {2}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19256

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x -\left (x^{2}+1\right ) y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

19257

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = -4 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

19258

\[ {}-y+y^{\prime } x = \left (x -1\right ) \left (y^{\prime \prime }-x +1\right ) \]

[[_2nd_order, _with_linear_symmetries]]

19260

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

19261

\[ {}\left (x^{2}+a \right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19262

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19263

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = x^{3}+3 x \]

[[_2nd_order, _with_linear_symmetries]]

19264

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19265

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19266

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\frac {a^{2} y}{-x^{2}+1} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19267

\[ {}\left (2 x -1\right ) y^{\prime \prime }-2 y^{\prime }+\left (3-2 x \right ) y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19268

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 8 x^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19269

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+5\right ) y = x \,{\mathrm e}^{-\frac {x^{2}}{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19270

\[ {}x \left (-x^{2}+1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) \left (3 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19271

\[ {}y^{\prime \prime }+\left (1-\frac {2}{x^{2}}\right ) y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19272

\[ {}\left (x^{3}-2 x^{2}\right ) y^{\prime \prime }+2 x^{2} y^{\prime }-12 \left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19273

\[ {}x y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+\left (x +2\right ) y = \left (x -2\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19274

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19276

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19278

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19279

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-\left (4 x^{2}-3 x -5\right ) y^{\prime }+\left (4 x^{2}-6 x -5\right ) y = {\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

19280

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x = m^{2} y \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19283

\[ {}\left (x +2\right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y = \left (x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

19284

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _with_linear_symmetries]]

19285

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19307

\[ {}2 y^{\prime \prime }+9 y^{\prime }-18 y = 0 \]

[[_2nd_order, _missing_x]]

19311

\[ {}y^{\prime \prime }+n^{2} y = \sec \left (n x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19313

\[ {}y^{\prime \prime }-4 y^{\prime }+y = a \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19316

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \sin \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

19318

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19319

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \sinh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19320

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19321

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \sin \left (x \right ) x \]

[[_2nd_order, _linear, _nonhomogeneous]]

19357

\[ {}x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19361

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 2 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19363

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (1-x \right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19365

\[ {}\left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

19367

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19369

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y = n^{2} x^{m} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19370

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19375

\[ {}2 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (7 x +3\right ) y^{\prime }-3 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19381

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

19382

\[ {}y^{\prime \prime } = \sec \left (x \right )^{2} \]

[[_2nd_order, _quadrature]]

19388

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

19392

\[ {}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19394

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _with_linear_symmetries]]

19395

\[ {}\left (x +2\right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y = \left (x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

19399

\[ {}x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19400

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19401

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{4}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19402

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+y = 0 \]

[_Lienard]

19403

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19407

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{3} \sin \left (x^{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19409

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19410

\[ {}x y^{\prime \prime }+\left (x -1\right ) y^{\prime }-y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19411

\[ {}3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+6 x +2\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19412

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19413

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19414

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]