2.3.20 first order ode nonlinear p but separable

Table 2.415: first order ode nonlinear p but separable

#

ODE

CAS classification

Solved?

5350

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5351

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5352

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5353

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5354

\[ {}{y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-a \right ) \left (y-b \right ) \left (y-c \right )^{2} \]

[_separable]

5428

\[ {}x {y^{\prime }}^{2} = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5457

\[ {}\left (x +1\right ) {y^{\prime }}^{2} = y \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

5475

\[ {}x^{2} {y^{\prime }}^{2}+y^{2}-y^{4} = 0 \]

[_separable]

5494

\[ {}\left (-x^{2}+1\right ) {y^{\prime }}^{2} = 1-y^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5515

\[ {}3 x^{4} {y^{\prime }}^{2}-x y-y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5587

\[ {}{y^{\prime }}^{3} = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5589

\[ {}{y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5590

\[ {}{y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5646

\[ {}{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5647

\[ {}{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5648

\[ {}{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3} \left (y-c \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

8432

\[ {}y = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8711

\[ {}{y^{\prime }}^{2} = \frac {y}{x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8713

\[ {}{y^{\prime }}^{2} = \frac {y^{3}}{x} \]

[[_homogeneous, ‘class G‘]]

8714

\[ {}{y^{\prime }}^{3} = \frac {y^{2}}{x} \]

[[_homogeneous, ‘class G‘], _rational]

8715

\[ {}{y^{\prime }}^{2} = \frac {1}{x y} \]

[[_homogeneous, ‘class G‘]]

8716

\[ {}{y^{\prime }}^{2} = \frac {1}{x y^{3}} \]

[[_homogeneous, ‘class G‘]]

8717

\[ {}{y^{\prime }}^{2} = \frac {1}{x^{2} y^{3}} \]

[_separable]

8718

\[ {}{y^{\prime }}^{4} = \frac {1}{x y^{3}} \]

[[_homogeneous, ‘class G‘], _rational]

8719

\[ {}{y^{\prime }}^{2} = \frac {1}{x^{3} y^{4}} \]

[_separable]

10095

\[ {}x {y^{\prime }}^{2}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10119

\[ {}x^{2} {y^{\prime }}^{2}+y^{2}-y^{4} = 0 \]

[_separable]

10135

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2}-y^{2}+1 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10206

\[ {}{y^{\prime }}^{3}-f \left (x \right ) \left (y^{2} a +b y+c \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

12581

\[ {}y = \left (x +1\right ) {y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

13643

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+3 y = 0 \]

[‘y=_G(x,y’)‘]

14007

\[ {}{y^{\prime }}^{2}-9 x y = 0 \]

[[_homogeneous, ‘class G‘]]

16498

\[ {}{y^{\prime }}^{3}+\left (x +2\right ) {\mathrm e}^{y} = 0 \]

[[_1st_order, _with_exponential_symmetries]]