2.2.180 Problems 17901 to 18000

Table 2.361: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

17901

\[ {}y^{\prime } = 1+3 \tan \left (x \right ) y \]

[_linear]

1.434

17902

\[ {}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.424

17903

\[ {}y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

1077.313

17904

\[ {}y^{\prime } = \frac {x +2 y+2}{y-2 x} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.192

17905

\[ {}3 x^{2} \ln \left (y\right )+\frac {x^{3} y^{\prime }}{y} = 0 \]

[_separable]

2.257

17906

\[ {}\frac {3 y^{2}}{x^{2}+3 x}+\left (2 y \ln \left (\frac {5 x}{x +3}\right )+3 \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

37.415

17907

\[ {}\frac {y-x}{\left (x +y\right )^{3}}-\frac {2 x y^{\prime }}{\left (x +y\right )^{3}} = 0 \]

[_linear]

6.303

17908

\[ {}x y^{2}+y+x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.083

17909

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

[[_2nd_order, _missing_y]]

0.459

17910

\[ {}3 x^{2} y-y^{3}-\left (3 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

8.526

17911

\[ {}x \left (x^{2}+1\right ) y^{\prime }+2 y = \left (x^{2}+1\right )^{3} \]

[_linear]

1.318

17912

\[ {}y^{\prime } = \frac {-3 x -2 y-1}{2 x +3 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.387

17913

\[ {}{\mathrm e}^{x^{2} y} \left (1+2 x^{2} y\right )+x^{3} {\mathrm e}^{x^{2} y} y^{\prime } = 0 \]

[_linear]

1.014

17914

\[ {}3 x^{2} {\mathrm e}^{y}-2 x +\left (x^{3} {\mathrm e}^{y}-\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

2.484

17915

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.271

17916

\[ {}3 x y+y^{2}+\left (3 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.043

17917

\[ {}x^{2} y^{\prime } = y^{2}+x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.107

17918

\[ {}x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

1.918

17919

\[ {}\frac {\cos \left (y\right )}{x +3}-\left (\sin \left (y\right ) \ln \left (5 x +15\right )-\frac {1}{y}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

41.355

17920

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.197

17921

\[ {}x y+y-1+x y^{\prime } = 0 \]

[_linear]

1.213

17922

\[ {}x^{2} y^{\prime }-y^{2} = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.365

17923

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.225

17924

\[ {}x^{\prime }+x \cot \left (y \right ) = \sec \left (y \right ) \]

[_linear]

1.678

17925

\[ {}x y^{\prime \prime }-y^{\prime } = 3 x^{2} \]

[[_2nd_order, _missing_y]]

1.704

17926

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.733

17927

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x \]

[[_2nd_order, _with_linear_symmetries]]

0.794

17928

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

3.452

17929

\[ {}y^{\prime \prime }-2 y^{\prime } = 6 \]

[[_2nd_order, _missing_x]]

1.428

17930

\[ {}y^{\prime \prime }-2 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.181

17931

\[ {}y^{\prime \prime } = {\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

0.810

17932

\[ {}y^{\prime \prime }-2 y^{\prime } = 4 \]

[[_2nd_order, _missing_x]]

1.269

17933

\[ {}y^{\prime \prime }-y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.083

17934

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.326

17935

\[ {}y^{\prime \prime }+2 y^{\prime } = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

1.379

17936

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.339

17937

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.295

17938

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2.490

17939

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.082

17940

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.804

17941

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.668

17942

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1.128

17943

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.854

17944

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.804

17945

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.306

17946

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.141

17947

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.693

17948

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.122

17949

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.103

17950

\[ {}x y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.333

17951

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.099

17952

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[_Gegenbauer]

0.102

17953

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.086

17954

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.099

17955

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler]]

0.101

17956

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.103

17957

\[ {}y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.477

17958

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.111

17959

\[ {}x y^{\prime \prime }-\left (x +n \right ) y^{\prime }+n y = 0 \]

[_Laguerre]

1.090

17960

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

0.951

17961

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

0.880

17962

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

[_Laguerre]

0.969

17963

\[ {}y^{\prime \prime }-f \left (x \right ) y^{\prime }+\left (f \left (x \right )-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.647

17964

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

0.367

17965

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.626

17966

\[ {}y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

2.506

17967

\[ {}2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

1.635

17968

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.634

17969

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

0.605

17970

\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

1.921

17971

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.701

17972

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

0.980

17973

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

1.652

17974

\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

0.412

17975

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

1.602

17976

\[ {}y^{\prime \prime } = 4 y \]

[[_2nd_order, _missing_x]]

2.714

17977

\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

[[_2nd_order, _missing_x]]

1.866

17978

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.642

17979

\[ {}16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.644

17980

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

0.697

17981

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

0.384

17982

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.826

17983

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.841

17984

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.839

17985

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.811

17986

\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.256

17987

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.895

17988

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

3.090

17989

\[ {}2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

[[_Emden, _Fowler]]

1.448

17990

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

[[_Emden, _Fowler]]

1.043

17991

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

[[_Emden, _Fowler]]

0.658

17992

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.386

17993

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.275

17994

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

3.378

17995

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.133

17996

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.302

17997

\[ {}x y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }+x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.573

17998

\[ {}y^{\prime \prime }+3 x y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.843

17999

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.943

18000

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.679