# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}4 y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.520 |
|
\[
{}a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
2.444 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.421 |
|
\[
{}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.335 |
|
\[
{}x^{2} y^{\prime \prime }+3 x y^{\prime }+\frac {5 y}{4} = 0
\] |
[[_Emden, _Fowler]] |
✓ |
2.067 |
|
\[
{}x^{2} y^{\prime \prime }-4 x y^{\prime }-6 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.194 |
|
\[
{}x^{2} y^{\prime \prime }-2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.943 |
|
\[
{}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.147 |
|
\[
{}x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
2.857 |
|
\[
{}2 x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
2.846 |
|
\[
{}2 x^{2} y^{\prime \prime }+x y^{\prime }-3 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
2.020 |
|
\[
{}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+17 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
3.957 |
|
\[
{}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.718 |
|
\[
{}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
3.695 |
|
\[
{}y^{\prime \prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.788 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.709 |
|
\[
{}m y^{\prime \prime }+k y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
23.617 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 3 \,{\mathrm e}^{2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.050 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
11.777 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = -3 t \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.117 |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 3+4 \sin \left (2 t \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
2.760 |
|
\[
{}y^{\prime \prime }+9 y = t^{2} {\mathrm e}^{3 t}+6
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.734 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.046 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+4 y = 2 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.080 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.075 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.038 |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.075 |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }+y = t^{2}+3 \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.838 |
|
\[
{}y^{\prime \prime }+y = 3 \sin \left (2 t \right )+t \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.910 |
|
\[
{}u^{\prime \prime }+w_{0}^{2} u = \cos \left (w t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.414 |
|
\[
{}y^{\prime \prime }+y^{\prime }+4 y = 2 \sinh \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
28.444 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = \cosh \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.474 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 2 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.217 |
|
\[
{}y^{\prime \prime }+4 y = t^{2}+3 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
5.622 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = t \,{\mathrm e}^{t}+4
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.596 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 3 t \,{\mathrm e}^{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.357 |
|
\[
{}y^{\prime \prime }+4 y = 3 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.327 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-t} \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
13.163 |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
72.711 |
|
\[
{}y^{\prime \prime }+y = t \left (1+\sin \left (t \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.539 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{t} \cos \left (2 t \right )+{\mathrm e}^{2 t} \left (3 t +4\right ) \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
5.737 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{-t} t^{2} \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
9.760 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 2 t^{2}+4 t \,{\mathrm e}^{2 t}+t \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
32.023 |
|
\[
{}y^{\prime \prime }+4 y = t^{2} \sin \left (2 t \right )+\left (6 t +7\right ) \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
6.031 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{t} \left (t^{2}+1\right ) \sin \left (2 t \right )+3 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
73.190 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 3 t \,{\mathrm e}^{-t} \cos \left (2 t \right )-2 t \,{\mathrm e}^{-2 t} \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
95.950 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-4 y = 2 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.135 |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.752 |
|
\[
{}x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.746 |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 x^{2}+2 \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.337 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \sin \left (\ln \left (x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
5.434 |
|
\[
{}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t \le \pi \\ \pi \,{\mathrm e}^{-t +\pi } & \pi <t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
6.332 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0\le t \le \frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
17.437 |
|
\[
{}y^{\prime \prime }+y = \left \{\begin {array}{cc} A t & 0\le t \le \pi \\ A \left (2 \pi -t \right ) & \pi <t \le 2 \pi \\ 0 & 2 \pi <t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.844 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y = 2 \cos \left (w t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
75.172 |
|
\[
{}y^{\prime \prime }+y = 2 \cos \left (w t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.329 |
|
\[
{}y^{\prime \prime }+y = 3 \cos \left (w t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.348 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (\frac {t}{4}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
74.168 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
74.541 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (6 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
76.137 |
|
\[
{}y^{\prime \prime }+y+\frac {y^{3}}{5} = \cos \left (w t \right )
\] |
[NONE] |
✗ |
0.179 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{5}+y+\frac {y^{3}}{5} = \cos \left (w t \right )
\] |
[NONE] |
✗ |
0.104 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.082 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.118 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.086 |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.074 |
|
\[
{}y^{\prime \prime }+y = \tan \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.096 |
|
\[
{}y^{\prime \prime }+4 y = 3 \sec \left (2 t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
8.980 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.362 |
|
\[
{}y^{\prime \prime }+4 y = 2 \csc \left (\frac {t}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
5.502 |
|
\[
{}4 y^{\prime \prime }+y = 2 \sec \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
72.345 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.763 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.727 |
|
\[
{}y^{\prime \prime }+4 y = g \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.939 |
|
\[
{}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.610 |
|
\[
{}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.334 |
|
\[
{}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.701 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 3 x^{{3}/{2}} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
12.612 |
|
\[
{}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = g \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.646 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
8.602 |
|
\[
{}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.131 |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.918 |
|
\[
{}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.023 |
|
\[
{}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.859 |
|
\[
{}y^{\prime \prime }+y = g \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.935 |
|
\[
{}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }-y = t^{2} {\mathrm e}^{2 t}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
0.451 |
|
\[
{}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.474 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.346 |
|
\[
{}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.322 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.273 |
|
\[
{}6 y^{\prime \prime }+5 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.277 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = t^{2} {\mathrm e}^{t}+7
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.366 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }-6 y = t^{2}+7
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.307 |
|
\[
{}y^{\prime \prime }+4 y = 3 \,{\mathrm e}^{-2 t} \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.461 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = t \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.480 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.350 |
|
\[
{}y^{\prime \prime \prime \prime }-6 y = t \,{\mathrm e}^{-t}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
0.829 |
|
\[
{}y^{\prime \prime }+16 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.818 |
|
\[
{}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.919 |
|
\[
{}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.740 |
|