2.2.160 Problems 15901 to 16000

Table 2.321: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15901

\[ {}y^{\prime } x +y = x \,{\mathrm e}^{x} \]

[_linear]

1.075

15902

\[ {}y^{\prime } x +y = {\mathrm e}^{-x} \]

[_linear]

1.127

15903

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 2 \]

[_linear]

1.434

15904

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}+1} = 4 t \]

[_linear]

1.866

15905

\[ {}y^{\prime } = 2 x +\frac {x y}{x^{2}-1} \]

[_linear]

3.628

15906

\[ {}y^{\prime }+\cot \left (t \right ) y = \cos \left (t \right ) \]

[_linear]

1.958

15907

\[ {}y^{\prime }-\frac {3 t y}{t^{2}-4} = t \]

[_linear]

1.868

15908

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}-9} = t \]

[_linear]

4.909

15909

\[ {}y^{\prime }-\frac {9 x y}{9 x^{2}+49} = x \]

[_linear]

3.925

15910

\[ {}y^{\prime }+2 \cot \left (x \right ) y = \cos \left (x \right ) \]

[_linear]

1.751

15911

\[ {}y^{\prime }+x y = x^{3} \]

[_linear]

1.328

15912

\[ {}y^{\prime }-x y = x \]

[_separable]

1.137

15913

\[ {}y^{\prime } = \frac {1}{x +y^{2}} \]

[[_1st_order, _with_exponential_symmetries]]

0.994

15914

\[ {}y^{\prime }-x = y \]

[[_linear, ‘class A‘]]

0.925

15915

\[ {}y-\left (x +3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.017

15916

\[ {}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]

[_separable]

1.228

15917

\[ {}p^{\prime } = t^{3}+\frac {p}{t} \]

[_linear]

1.157

15918

\[ {}v^{\prime }+v = {\mathrm e}^{-s} \]

[[_linear, ‘class A‘]]

0.921

15919

\[ {}-y+y^{\prime } = 4 \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

1.294

15920

\[ {}y+y^{\prime } = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

1.186

15921

\[ {}y^{\prime }+3 t^{2} y = {\mathrm e}^{-t^{3}} \]
i.c.

[_linear]

2.353

15922

\[ {}2 t y+y^{\prime } = 2 t \]
i.c.

[_separable]

1.429

15923

\[ {}y^{\prime } t +y = \cos \left (t \right ) \]
i.c.

[_linear]

1.470

15924

\[ {}y^{\prime } t +y = 2 \,{\mathrm e}^{t} t \]
i.c.

[_linear]

1.402

15925

\[ {}\left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y = t \]
i.c.

[_linear]

2.059

15926

\[ {}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

1.576

15927

\[ {}x^{\prime } = x+t +1 \]
i.c.

[[_linear, ‘class A‘]]

1.266

15928

\[ {}y^{\prime } = 2 y+{\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

1.231

15929

\[ {}y^{\prime }-\frac {y}{t} = \ln \left (t \right ) \]

[_linear]

0.968

15930

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.462

15931

\[ {}y+y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.960

15932

\[ {}y+y^{\prime } = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.894

15933

\[ {}-y+y^{\prime } = \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1.397

15934

\[ {}y+y^{\prime } = 5 \,{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

1.131

15935

\[ {}y+y^{\prime } = {\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

0.896

15936

\[ {}y+y^{\prime } = 2-{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

1.081

15937

\[ {}y^{\prime }-5 y = t \]

[[_linear, ‘class A‘]]

0.973

15938

\[ {}3 y+y^{\prime } = 27 t^{2}+9 \]

[[_linear, ‘class A‘]]

1.023

15939

\[ {}-\frac {y}{2}+y^{\prime } = 5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1.961

15940

\[ {}y^{\prime }+4 y = 8 \cos \left (4 t \right ) \]

[[_linear, ‘class A‘]]

1.574

15941

\[ {}y^{\prime }+10 y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1.160

15942

\[ {}y^{\prime }-3 y = 27 t^{2} \]

[[_linear, ‘class A‘]]

1.070

15943

\[ {}-y+y^{\prime } = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

0.970

15944

\[ {}y+y^{\prime } = 4+3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1.066

15945

\[ {}y+y^{\prime } = 2 \cos \left (t \right )+t \]

[[_linear, ‘class A‘]]

1.681

15946

\[ {}\frac {y}{2}+y^{\prime } = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.634

15947

\[ {}-\frac {y}{2}+y^{\prime } = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.524

15948

\[ {}y^{\prime } t +y = t \cos \left (t \right ) \]

[_linear]

1.233

15949

\[ {}y+y^{\prime } = t \]
i.c.

[[_linear, ‘class A‘]]

1.215

15950

\[ {}y+y^{\prime } = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.572

15951

\[ {}y+y^{\prime } = \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.465

15952

\[ {}y+y^{\prime } = {\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

1.319

15953

\[ {}y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

91.976

15954

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

[_separable]

3.392

15955

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

[_separable]

1.759

15956

\[ {}\sec \left (t \right )^{2} y+2 t +\tan \left (t \right ) y^{\prime } = 0 \]

[_linear]

12.898

15957

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

[_separable]

3.527

15958

\[ {}t -\sin \left (t \right ) y+\left (y^{6}+\cos \left (t \right )\right ) y^{\prime } = 0 \]

[_exact]

3.106

15959

\[ {}\sin \left (2 t \right ) y+\left (\sqrt {y}+\cos \left (2 t \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6.167

15960

\[ {}\ln \left (t y\right )+\frac {t y^{\prime }}{y} = 0 \]

[[_homogeneous, ‘class G‘], _exact]

2.172

15961

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

[_separable]

1.709

15962

\[ {}3 t^{2}-y^{\prime } = 0 \]

[_quadrature]

0.302

15963

\[ {}-1+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

1.078

15964

\[ {}y^{2}+2 t y y^{\prime } = 0 \]

[_separable]

1.841

15965

\[ {}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

[_separable]

1.814

15966

\[ {}2 t +y^{3}+\left (3 t y^{2}+4\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.344

15967

\[ {}-\frac {1}{y}+\left (\frac {t}{y^{2}}+3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

1.591

15968

\[ {}2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

3.175

15969

\[ {}2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

1.812

15970

\[ {}\sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime } = 0 \]

[_separable]

6.091

15971

\[ {}3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

3.624

15972

\[ {}{\mathrm e}^{t} \sin \left (y\right )+\left (1+{\mathrm e}^{t} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.205

15973

\[ {}3 t^{2} y+3 y^{2}-1+\left (t^{3}+6 t y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.731

15974

\[ {}-2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0 \]

[_separable]

3.290

15975

\[ {}2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0 \]

[_exact]

41.275

15976

\[ {}1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

62.290

15977

\[ {}2 t \sin \left (y\right )-2 t y \sin \left (t^{2}\right )+\left (t^{2} \cos \left (y\right )+\cos \left (t^{2}\right )\right ) y^{\prime } = 0 \]

[_exact]

38.152

15978

\[ {}\left (t +3\right ) \cos \left (t +y\right )+\sin \left (t +y\right )+\left (t +3\right ) \cos \left (t +y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

22.855

15979

\[ {}\frac {2 t^{2} y \cos \left (t^{2}\right )-y \sin \left (t^{2}\right )}{t^{2}}+\frac {\left (2 t y+\sin \left (t^{2}\right )\right ) y^{\prime }}{t} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

9.367

15980

\[ {}-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

4.526

15981

\[ {}2 t \sin \left (\frac {y}{t}\right )-y \cos \left (\frac {y}{t}\right )+t \cos \left (\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

4.593

15982

\[ {}2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]
i.c.

[_separable]

1.990

15983

\[ {}1+\frac {y}{t^{2}}-\frac {y^{\prime }}{t} = 0 \]
i.c.

[_linear]

1.374

15984

\[ {}2 t y+3 t^{2}+\left (t^{2}-1\right ) y^{\prime } = 0 \]
i.c.

[_linear]

1.462

15985

\[ {}1+5 t -y-\left (t +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.323

15986

\[ {}{\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact]

2.118

15987

\[ {}2 t y \,{\mathrm e}^{t^{2}}+2 t \,{\mathrm e}^{-y}+\left ({\mathrm e}^{t^{2}}-t^{2} {\mathrm e}^{-y}+1\right ) y^{\prime } = 0 \]
i.c.

[_exact]

37.780

15988

\[ {}y^{2}-2 \sin \left (2 t \right )+\left (1+2 t y\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

36.629

15989

\[ {}\cos \left (t \right )^{2}-\sin \left (t \right )^{2}+y+\left (\sec \left (y\right ) \tan \left (y\right )+t \right ) y^{\prime } = 0 \]
i.c.

[_exact]

41.635

15990

\[ {}\frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0 \]
i.c.

[_exact, _rational, _Bernoulli]

2.163

15991

\[ {}\frac {2 t}{t^{2}+1}+y+\left ({\mathrm e}^{y}+t \right ) y^{\prime } = 0 \]
i.c.

[_exact]

3.067

15992

\[ {}-2 x -y \cos \left (x y\right )+\left (2 y-x \cos \left (x y\right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

11.780

15993

\[ {}-4 x^{3}+6 y \sin \left (6 x y\right )+\left (4 y^{3}+6 x \sin \left (6 x y\right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

50.225

15994

\[ {}t^{2} y+t^{3} y^{\prime } = 0 \]

[_separable]

1.436

15995

\[ {}y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0 \]

[_separable]

1.862

15996

\[ {}y+\left (2 t -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.370

15997

\[ {}2 t y+y^{2}-t^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.186

15998

\[ {}y+2 t^{2}+\left (t^{2} y-t \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1.503

15999

\[ {}5 t y+4 y^{2}+1+\left (t^{2}+2 t y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.635

16000

\[ {}5 t y^{2}+y+\left (2 t^{3}-t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.425