2.2.16 Problems 1501 to 1600

Table 2.33: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

1501

\[ {}y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.560

1502

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

2.171

1503

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = k \left (\operatorname {Heaviside}\left (t -\frac {3}{2}\right )-\operatorname {Heaviside}\left (t -\frac {5}{2}\right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.049

1504

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\operatorname {Heaviside}\left (t -\frac {3}{2}\right )}{2}-\frac {\operatorname {Heaviside}\left (t -\frac {5}{2}\right )}{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.233

1505

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\operatorname {Heaviside}\left (t -5\right ) \left (t -5\right )-\operatorname {Heaviside}\left (t -5-k \right ) \left (t -5-k \right )}{k} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.733

1506

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.744

1507

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.497

1508

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -5\right )+\operatorname {Heaviside}\left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.656

1509

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \sin \left (t \right )+\delta \left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.673

1510

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.511

1511

\[ {}y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.456

1512

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.144

1513

\[ {}y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

2.056

1514

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.864

1515

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.816

1516

\[ {}y^{\prime \prime }+y = \frac {\operatorname {Heaviside}\left (t -4+k \right )-\operatorname {Heaviside}\left (t -4-k \right )}{2 k} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.536

1517

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.086

1518

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.531

1519

\[ {}y^{\prime } = 2 y \]

[_quadrature]

1.137

1520

\[ {}x y^{\prime }+y = x^{2} \]

[_linear]

1.270

1521

\[ {}y^{\prime }+2 x y = x \]

[_separable]

1.191

1522

\[ {}2 y^{\prime }+x \left (y^{2}-1\right ) = 0 \]

[_separable]

2.045

1523

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

3.339

1524

\[ {}y^{\prime } = -x \]

[_quadrature]

0.266

1525

\[ {}y^{\prime } = -x \sin \left (x \right ) \]

[_quadrature]

0.370

1526

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

0.330

1527

\[ {}y^{\prime } = -x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

0.515

1528

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

0.725

1529

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

0.966

1530

\[ {}y^{\prime } = \cos \left (x \right )-y \tan \left (x \right ) \]
i.c.

[_linear]

1.970

1531

\[ {}y^{\prime } = \frac {x^{2}-2 x^{2} y+2}{x^{3}} \]
i.c.

[_linear]

1.424

1532

\[ {}y^{\prime } = x \left (1+y^{2}\right ) \]
i.c.

[_separable]

2.507

1533

\[ {}y^{\prime } = -\frac {y \left (1+y\right )}{x} \]
i.c.

[_separable]

2.246

1534

\[ {}y^{\prime } = a y^{\frac {a -1}{a}} \]

[_quadrature]

1.069

1535

\[ {}y^{\prime } = {| y|}+1 \]
i.c.

[_quadrature]

1.289

1536

\[ {}y^{\prime } = -\frac {x}{2}-1+\frac {\sqrt {x^{2}+4 x +4 y}}{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.849

1537

\[ {}y^{\prime }+a y = 0 \]

[_quadrature]

0.773

1538

\[ {}y^{\prime }+3 x^{2} y = 0 \]

[_separable]

1.237

1539

\[ {}x y^{\prime }+y \ln \left (x \right ) = 0 \]

[_separable]

1.468

1540

\[ {}x y^{\prime }+3 y = 0 \]

[_separable]

1.789

1541

\[ {}x^{2} y^{\prime }+y = 0 \]

[_separable]

1.428

1542

\[ {}y^{\prime }+\frac {\left (x +1\right ) y}{x} = 0 \]
i.c.

[_separable]

1.815

1543

\[ {}x y^{\prime }+\left (1+\frac {1}{\ln \left (x \right )}\right ) y = 0 \]
i.c.

[_separable]

2.060

1544

\[ {}x y^{\prime }+\left (1+x \cot \left (x \right )\right ) y = 0 \]
i.c.

[_separable]

2.464

1545

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 0 \]
i.c.

[_separable]

1.683

1546

\[ {}y^{\prime }+\frac {k y}{x} = 0 \]
i.c.

[_separable]

1.641

1547

\[ {}y^{\prime }+\tan \left (k x \right ) y = 0 \]
i.c.

[_separable]

2.072

1548

\[ {}y^{\prime }+3 y = 1 \]

[_quadrature]

1.107

1549

\[ {}y^{\prime }+\left (\frac {1}{x}-1\right ) y = -\frac {2}{x} \]

[_linear]

1.153

1550

\[ {}y^{\prime }+2 x y = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

2.426

1551

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {{\mathrm e}^{-x^{2}}}{x^{2}+1} \]

[_linear]

1.542

1552

\[ {}y^{\prime }+\frac {y}{x} = \frac {7}{x^{2}}+3 \]

[_linear]

1.056

1553

\[ {}y^{\prime }+\frac {4 y}{x -1} = \frac {1}{\left (x -1\right )^{5}}+\frac {\sin \left (x \right )}{\left (x -1\right )^{4}} \]

[_linear]

4.945

1554

\[ {}x y^{\prime }+\left (2 x^{2}+1\right ) y = x^{3} {\mathrm e}^{-x^{2}} \]

[_linear]

2.756

1555

\[ {}x y^{\prime }+2 y = \frac {2}{x^{2}}+1 \]

[_linear]

1.088

1556

\[ {}y^{\prime }+y \tan \left (x \right ) = \cos \left (x \right ) \]

[_linear]

1.713

1557

\[ {}\left (x +1\right ) y^{\prime }+2 y = \frac {\sin \left (x \right )}{x +1} \]

[_linear]

2.760

1558

\[ {}\left (-2+x \right ) \left (x -1\right ) y^{\prime }-\left (4 x -3\right ) y = \left (-2+x \right )^{3} \]

[_linear]

3.063

1559

\[ {}y^{\prime }+2 \sin \left (x \right ) \cos \left (x \right ) y = {\mathrm e}^{-\sin \left (x \right )^{2}} \]

[_linear]

2.071

1560

\[ {}x^{2} y^{\prime }+3 x y = {\mathrm e}^{x} \]

[_linear]

1.241

1561

\[ {}y^{\prime }+7 y = {\mathrm e}^{3 x} \]
i.c.

[[_linear, ‘class A‘]]

1.419

1562

\[ {}\left (x^{2}+1\right ) y^{\prime }+4 x y = \frac {2}{x^{2}+1} \]
i.c.

[_linear]

3.094

1563

\[ {}x y^{\prime }+3 y = \frac {2}{x \left (x^{2}+1\right )} \]
i.c.

[_linear]

1.895

1564

\[ {}y^{\prime }+\cot \left (x \right ) y = \cos \left (x \right ) \]
i.c.

[_linear]

2.054

1565

\[ {}y^{\prime }+\frac {y}{x} = \frac {2}{x^{2}}+1 \]
i.c.

[_linear]

1.235

1566

\[ {}\left (x -1\right ) y^{\prime }+3 y = \frac {1}{\left (x -1\right )^{3}}+\frac {\sin \left (x \right )}{\left (x -1\right )^{2}} \]
i.c.

[_linear]

4.263

1567

\[ {}x y^{\prime }+2 y = 8 x^{2} \]
i.c.

[_linear]

1.902

1568

\[ {}x y^{\prime }-2 y = -x^{2} \]
i.c.

[_linear]

1.368

1569

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

1.562

1570

\[ {}\left (x -1\right ) y^{\prime }+3 y = \frac {1+\left (x -1\right ) \sec \left (x \right )^{2}}{\left (x -1\right )^{3}} \]
i.c.

[_linear]

10.115

1571

\[ {}\left (x +2\right ) y^{\prime }+4 y = \frac {2 x^{2}+1}{x \left (x +2\right )^{3}} \]
i.c.

[_linear]

1.595

1572

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y = x \left (x^{2}-1\right ) \]
i.c.

[_linear]

1.742

1573

\[ {}x y^{\prime }-2 y = -1 \]
i.c.

[_separable]

2.291

1574

\[ {}\sec \left (y\right )^{2} y^{\prime }-3 \tan \left (y\right ) = -1 \]

[_quadrature]

476.183

1575

\[ {}{\mathrm e}^{y^{2}} \left (2 y y^{\prime }+\frac {2}{x}\right ) = \frac {1}{x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.826

1576

\[ {}\frac {x y^{\prime }}{y}+2 \ln \left (y\right ) = 4 x^{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.549

1577

\[ {}\frac {y^{\prime }}{\left (1+y\right )^{2}}-\frac {1}{x \left (1+y\right )} = -\frac {3}{x^{2}} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

1.824

1578

\[ {}y^{\prime } = \frac {3 x^{2}+2 x +1}{-2+y} \]

[_separable]

1.538

1579

\[ {}\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.960

1580

\[ {}x y^{\prime }+y^{2}+y = 0 \]

[_separable]

1.685

1581

\[ {}\left (3 y^{3}+3 y \cos \left (y\right )+1\right ) y^{\prime }+\frac {\left (2 x +1\right ) y}{x^{2}+1} = 0 \]

[_separable]

2.820

1582

\[ {}x^{2} y y^{\prime } = \left (y^{2}-1\right )^{{3}/{2}} \]

[_separable]

7.102

1583

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

3.140

1584

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

[_separable]

1.316

1585

\[ {}y^{\prime } = \left (x -1\right ) \left (y-1\right ) \left (-2+y\right ) \]

[_separable]

2.701

1586

\[ {}\left (y-1\right )^{2} y^{\prime } = 2 x +3 \]

[_separable]

1.841

1587

\[ {}y^{\prime } = \frac {x^{2}+3 x +2}{-2+y} \]
i.c.

[_separable]

2.192

1588

\[ {}y^{\prime }+x \left (y^{2}+y\right ) = 0 \]
i.c.

[_separable]

2.207

1589

\[ {}\left (3 y^{2}+4 y\right ) y^{\prime }+2 x +\cos \left (x \right ) = 0 \]
i.c.

[_separable]

181.736

1590

\[ {}y^{\prime }+\frac {\left (1+y\right ) \left (y-1\right ) \left (-2+y\right )}{x +1} = 0 \]
i.c.

[_separable]

9.549

1591

\[ {}y^{\prime }+2 x \left (1+y\right ) = 0 \]
i.c.

[_separable]

1.446

1592

\[ {}y^{\prime } = 2 x y \left (1+y^{2}\right ) \]
i.c.

[_separable]

8.292

1593

\[ {}y^{\prime } \left (x^{2}+2\right ) = 4 x \left (y^{2}+2 y+1\right ) \]

[_separable]

2.515

1594

\[ {}y^{\prime } = -2 x \left (y^{3}-3 y+2\right ) \]
i.c.

[_separable]

4.161

1595

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

3.226

1596

\[ {}y^{\prime } = 2 y-y^{2} \]
i.c.

[_quadrature]

2.263

1597

\[ {}x +y y^{\prime } = 0 \]
i.c.

[_separable]

4.347

1598

\[ {}y^{\prime }+x^{2} \left (1+y\right ) \left (-2+y\right )^{2} = 0 \]

[_separable]

2.960

1599

\[ {}\left (x +1\right ) \left (-2+x \right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

1.829

1600

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1.801