2.2.157 Problems 15601 to 15700

Table 2.315: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15601

\[ {}y^{\prime } = y^{2}-3 y+2 \]

[_quadrature]

1.317

15602

\[ {}4 \left (x -1\right )^{2} y^{\prime }-3 \left (y+3\right )^{2} = 0 \]

[_separable]

2.063

15603

\[ {}y^{\prime } = \sin \left (t -y\right )+\sin \left (y+t \right ) \]

[_separable]

5.320

15604

\[ {}y^{\prime } = y^{3}+1 \]

[_quadrature]

2.212

15605

\[ {}y^{\prime } = y^{3}-1 \]

[_quadrature]

2.634

15606

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

3.928

15607

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

3.510

15608

\[ {}y^{\prime } = y^{3}-y \]

[_quadrature]

3.219

15609

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

3.982

15610

\[ {}y^{\prime } = x^{3} \]
i.c.

[_quadrature]

0.447

15611

\[ {}y^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

0.495

15612

\[ {}1 = \cos \left (y\right ) y^{\prime } \]
i.c.

[_quadrature]

4.036

15613

\[ {}\sin \left (y \right )^{2} = x^{\prime } \]
i.c.

[_quadrature]

0.626

15614

\[ {}y^{\prime } = \frac {\sqrt {t}}{y} \]
i.c.

[_separable]

6.410

15615

\[ {}y^{\prime } = \sqrt {\frac {y}{t}} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15.338

15616

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y+1} \]
i.c.

[_separable]

2.233

15617

\[ {}y^{\prime } = {\mathrm e}^{t -y} \]
i.c.

[_separable]

2.854

15618

\[ {}y^{\prime } = \frac {y}{\ln \left (y\right )} \]
i.c.

[_quadrature]

4.572

15619

\[ {}y^{\prime } = t \sin \left (t^{2}\right ) \]
i.c.

[_quadrature]

0.706

15620

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

0.521

15621

\[ {}y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1} \]
i.c.

[_separable]

2.927

15622

\[ {}y^{\prime } = \frac {y+3}{3 x +1} \]
i.c.

[_separable]

2.151

15623

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

2.485

15624

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

3.696

15625

\[ {}y^{\prime } = \frac {3 y+1}{x +3} \]
i.c.

[_separable]

2.069

15626

\[ {}y^{\prime } = y \cos \left (t \right ) \]
i.c.

[_separable]

1.841

15627

\[ {}y^{\prime } = y^{2} \cos \left (t \right ) \]
i.c.

[_separable]

1.898

15628

\[ {}y^{\prime } = \sqrt {y}\, \cos \left (t \right ) \]
i.c.

[_separable]

2.073

15629

\[ {}y^{\prime }+y f \left (t \right ) = 0 \]
i.c.

[_separable]

1.462

15630

\[ {}y^{\prime } = -\frac {y-2}{-2+x} \]
i.c.

[_separable]

1.955

15631

\[ {}y^{\prime } = \frac {x +y+3}{3 x +3 y+1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.342

15632

\[ {}y^{\prime } = \frac {x -y+2}{2 x -2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.323

15633

\[ {}y^{\prime } = \left (x +y-4\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4.735

15634

\[ {}y^{\prime } = \left (3 y+1\right )^{4} \]

[_quadrature]

1.794

15635

\[ {}y^{\prime } = 3 y \]

[_quadrature]

1.051

15636

\[ {}y^{\prime } = -y \]

[_quadrature]

1.011

15637

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

1.398

15638

\[ {}y^{\prime } = 16 y-8 y^{2} \]

[_quadrature]

1.852

15639

\[ {}y^{\prime } = 12+4 y-y^{2} \]

[_quadrature]

1.568

15640

\[ {}y^{\prime } = y f \left (t \right ) \]
i.c.

[_separable]

1.262

15641

\[ {}y^{\prime }-y = 10 \]

[_quadrature]

0.929

15642

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1.111

15643

\[ {}y^{\prime }-y = 2 \cos \left (t \right ) \]

[[_linear, ‘class A‘]]

1.240

15644

\[ {}y^{\prime }-y = t^{2}-2 t \]

[[_linear, ‘class A‘]]

1.079

15645

\[ {}y^{\prime }-y = 4 t \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1.152

15646

\[ {}t y^{\prime }+y = t^{2} \]

[_linear]

1.266

15647

\[ {}t y^{\prime }+y = t \]

[_linear]

1.875

15648

\[ {}x y^{\prime }+y = x \,{\mathrm e}^{x} \]

[_linear]

1.079

15649

\[ {}x y^{\prime }+y = {\mathrm e}^{-x} \]

[_linear]

0.982

15650

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 2 \]

[_linear]

1.480

15651

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}+1} = 4 t \]

[_linear]

1.779

15652

\[ {}y^{\prime } = 2 x +\frac {x y}{x^{2}-1} \]

[_linear]

2.753

15653

\[ {}y^{\prime }+y \cot \left (t \right ) = \cos \left (t \right ) \]

[_linear]

1.722

15654

\[ {}y^{\prime }-\frac {3 t y}{t^{2}-4} = t \]

[_linear]

1.741

15655

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}-9} = t \]

[_linear]

3.270

15656

\[ {}y^{\prime }-\frac {9 x y}{9 x^{2}+49} = x \]

[_linear]

3.119

15657

\[ {}y^{\prime }+2 y \cot \left (x \right ) = \cos \left (x \right ) \]

[_linear]

1.772

15658

\[ {}y^{\prime }+x y = x^{3} \]

[_linear]

1.579

15659

\[ {}y^{\prime }-x y = x \]

[_separable]

1.119

15660

\[ {}y^{\prime } = \frac {1}{y^{2}+x} \]

[[_1st_order, _with_exponential_symmetries]]

0.977

15661

\[ {}y^{\prime }-x = y \]

[[_linear, ‘class A‘]]

0.972

15662

\[ {}y-\left (x +3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.990

15663

\[ {}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]

[_separable]

1.368

15664

\[ {}p^{\prime } = t^{3}+\frac {p}{t} \]

[_linear]

1.216

15665

\[ {}v^{\prime }+v = {\mathrm e}^{-s} \]

[[_linear, ‘class A‘]]

0.965

15666

\[ {}y^{\prime }-y = 4 \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

1.286

15667

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

1.132

15668

\[ {}y^{\prime }+3 t^{2} y = {\mathrm e}^{-t^{3}} \]
i.c.

[_linear]

2.170

15669

\[ {}y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

1.464

15670

\[ {}t y^{\prime }+y = \cos \left (t \right ) \]
i.c.

[_linear]

1.457

15671

\[ {}t y^{\prime }+y = 2 t \,{\mathrm e}^{t} \]
i.c.

[_linear]

1.327

15672

\[ {}\left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y = t \]
i.c.

[_linear]

1.737

15673

\[ {}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

1.589

15674

\[ {}x^{\prime } = x+t +1 \]
i.c.

[[_linear, ‘class A‘]]

1.291

15675

\[ {}y^{\prime } = {\mathrm e}^{2 t}+2 y \]
i.c.

[[_linear, ‘class A‘]]

1.289

15676

\[ {}y^{\prime }-\frac {y}{t} = \ln \left (t \right ) \]

[_linear]

0.964

15677

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.805

15678

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.615

15679

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.592

15680

\[ {}y^{\prime }-y = \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1.294

15681

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

1.109

15682

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

0.947

15683

\[ {}y^{\prime }+y = 2-{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

1.086

15684

\[ {}y^{\prime }-5 y = t \]

[[_linear, ‘class A‘]]

1.010

15685

\[ {}y^{\prime }+3 y = 27 t^{2}+9 \]

[[_linear, ‘class A‘]]

1.060

15686

\[ {}y^{\prime }-\frac {y}{2} = 5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1.821

15687

\[ {}y^{\prime }+4 y = 8 \cos \left (4 t \right ) \]

[[_linear, ‘class A‘]]

1.424

15688

\[ {}y^{\prime }+10 y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1.114

15689

\[ {}y^{\prime }-3 y = 27 t^{2} \]

[[_linear, ‘class A‘]]

1.059

15690

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

0.982

15691

\[ {}y^{\prime }+y = 4+3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1.186

15692

\[ {}y^{\prime }+y = 2 \cos \left (t \right )+t \]

[[_linear, ‘class A‘]]

1.483

15693

\[ {}y^{\prime }+\frac {y}{2} = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.381

15694

\[ {}y^{\prime }-\frac {y}{2} = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.452

15695

\[ {}t y^{\prime }+y = t \cos \left (t \right ) \]

[_linear]

1.219

15696

\[ {}y^{\prime }+y = t \]
i.c.

[[_linear, ‘class A‘]]

1.256

15697

\[ {}y^{\prime }+y = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.519

15698

\[ {}y^{\prime }+y = \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.483

15699

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

1.314

15700

\[ {}y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

57.323