# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime } = t^{2} y^{3}
\] |
[_separable] |
✓ |
4.092 |
|
\[
{}y^{\prime } = -y^{2}
\] |
[_quadrature] |
✓ |
1.150 |
|
\[
{}y^{\prime } = \frac {t}{y-t^{2} y}
\] |
[_separable] |
✓ |
5.288 |
|
\[
{}y^{\prime } = 2 y+1
\] |
[_quadrature] |
✓ |
1.286 |
|
\[
{}y^{\prime } = t y^{2}+2 y^{2}
\] |
[_separable] |
✓ |
1.878 |
|
\[
{}x^{\prime } = \frac {t^{2}}{x+t^{3} x}
\] |
[_separable] |
✓ |
2.591 |
|
\[
{}y^{\prime } = \frac {1-y^{2}}{y}
\] |
[_quadrature] |
✓ |
7.452 |
|
\[
{}y^{\prime } = \left (1+y^{2}\right ) t
\] |
[_separable] |
✓ |
2.411 |
|
\[
{}y^{\prime } = \frac {1}{2 y+3}
\] |
[_quadrature] |
✓ |
1.501 |
|
\[
{}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2}
\] |
[_separable] |
✓ |
1.805 |
|
\[
{}y^{\prime } = \frac {y^{2}+5}{y}
\] |
[_quadrature] |
✓ |
15.671 |
|
\[
{}y^{\prime } = t^{2}+t
\] |
[_quadrature] |
✓ |
0.269 |
|
\[
{}y^{\prime } = t^{2}+1
\] |
[_quadrature] |
✓ |
0.270 |
|
\[
{}y^{\prime } = 1-2 y
\] |
[_quadrature] |
✓ |
1.044 |
|
\[
{}y^{\prime } = 4 y^{2}
\] |
[_quadrature] |
✓ |
0.932 |
|
\[
{}y^{\prime } = 2 y \left (1-y\right )
\] |
[_quadrature] |
✓ |
1.764 |
|
\[
{}y^{\prime } = y+t +1
\] |
[[_linear, ‘class A‘]] |
✓ |
0.989 |
|
\[
{}y^{\prime } = 3 y \left (1-y\right )
\] |
[_quadrature] |
✓ |
2.223 |
|
\[
{}y^{\prime } = 2 y-t
\] |
[[_linear, ‘class A‘]] |
✓ |
1.274 |
|
\[
{}y^{\prime } = \left (y+\frac {1}{2}\right ) \left (y+t \right )
\] |
[_Riccati] |
✓ |
1.565 |
|
\[
{}y^{\prime } = \left (t +1\right ) y
\] |
[_separable] |
✓ |
1.693 |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
3.940 |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
3.899 |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
4.599 |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
3.911 |
|
\[
{}S^{\prime } = S^{3}-2 S^{2}+S
\] |
[_quadrature] |
✓ |
3.888 |
|
\[
{}y^{\prime } = y^{2}+y
\] |
[_quadrature] |
✓ |
1.485 |
|
\[
{}y^{\prime } = y^{2}-y
\] |
[_quadrature] |
✓ |
1.364 |
|
\[
{}y^{\prime } = y^{3}+y^{2}
\] |
[_quadrature] |
✓ |
4.295 |
|
\[
{}y^{\prime } = -t^{2}+2
\] |
[_quadrature] |
✓ |
0.269 |
|
\[
{}y^{\prime } = t y+t y^{2}
\] |
[_separable] |
✓ |
2.022 |
|
\[
{}y^{\prime } = t^{2}+t^{2} y
\] |
[_separable] |
✓ |
1.108 |
|
\[
{}y^{\prime } = t +t y
\] |
[_separable] |
✓ |
1.065 |
|
\[
{}y^{\prime } = t^{2}-2
\] |
[_quadrature] |
✓ |
0.261 |
|
\[
{}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10}
\] |
[_quadrature] |
✓ |
1.303 |
|
\[
{}\theta ^{\prime } = 2
\] |
[_quadrature] |
✓ |
0.464 |
|
\[
{}\theta ^{\prime } = \frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10}
\] |
[_quadrature] |
✓ |
1.251 |
|
\[
{}v^{\prime } = -\frac {v}{R C}
\] |
[_quadrature] |
✓ |
0.913 |
|
\[
{}v^{\prime } = \frac {K -v}{R C}
\] |
[_quadrature] |
✓ |
0.752 |
|
\[
{}v^{\prime } = 2 V \left (t \right )-2 v
\] |
[[_linear, ‘class A‘]] |
✓ |
1.231 |
|
\[
{}y^{\prime } = 2 y+1
\] |
[_quadrature] |
✓ |
1.261 |
|
\[
{}y^{\prime } = t -y^{2}
\] |
[[_Riccati, _special]] |
✓ |
1.850 |
|
\[
{}y^{\prime } = y^{2}-4 t
\] |
[[_Riccati, _special]] |
✓ |
1.910 |
|
\[
{}y^{\prime } = \sin \left (y\right )
\] |
[_quadrature] |
✓ |
5.816 |
|
\[
{}w^{\prime } = \left (3-w\right ) \left (w+1\right )
\] |
[_quadrature] |
✓ |
1.819 |
|
\[
{}w^{\prime } = \left (3-w\right ) \left (w+1\right )
\] |
[_quadrature] |
✓ |
1.839 |
|
\[
{}y^{\prime } = {\mathrm e}^{\frac {2}{y}}
\] |
[_quadrature] |
✓ |
3.846 |
|
\[
{}y^{\prime } = {\mathrm e}^{\frac {2}{y}}
\] |
[_quadrature] |
✓ |
3.859 |
|
\[
{}y^{\prime } = y^{2}-y^{3}
\] |
[_quadrature] |
✓ |
3.944 |
|
\[
{}y^{\prime } = 2 y^{3}+t^{2}
\] |
[_Abel] |
✗ |
0.723 |
|
\[
{}y^{\prime } = \sqrt {y}
\] |
[_quadrature] |
✓ |
1.387 |
|
\[
{}y^{\prime } = 2-y
\] |
[_quadrature] |
✓ |
1.173 |
|
\[
{}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10}
\] |
[_quadrature] |
✓ |
2.336 |
|
\[
{}y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\] |
[_quadrature] |
✓ |
319.271 |
|
\[
{}y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\] |
[_quadrature] |
✓ |
362.453 |
|
\[
{}y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\] |
[_quadrature] |
✓ |
371.357 |
|
\[
{}y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\] |
[_quadrature] |
✓ |
364.684 |
|
\[
{}y^{\prime } = -y^{2}
\] |
[_quadrature] |
✓ |
0.933 |
|
\[
{}y^{\prime } = y^{3}
\] |
[_quadrature] |
✓ |
1.839 |
|
\[
{}y^{\prime } = \frac {1}{\left (y+1\right ) \left (t -2\right )}
\] |
[_separable] |
✓ |
1.747 |
|
\[
{}y^{\prime } = \frac {1}{\left (y+2\right )^{2}}
\] |
[_quadrature] |
✓ |
1.745 |
|
\[
{}y^{\prime } = \frac {t}{y-2}
\] |
[_separable] |
✓ |
2.906 |
|
\[
{}y^{\prime } = 3 y \left (y-2\right )
\] |
[_quadrature] |
✓ |
2.024 |
|
\[
{}y^{\prime } = 3 y \left (y-2\right )
\] |
[_quadrature] |
✓ |
2.091 |
|
\[
{}y^{\prime } = 3 y \left (y-2\right )
\] |
[_quadrature] |
✓ |
2.073 |
|
\[
{}y^{\prime } = 3 y \left (y-2\right )
\] |
[_quadrature] |
✓ |
1.921 |
|
\[
{}y^{\prime } = y^{2}-4 y-12
\] |
[_quadrature] |
✓ |
1.767 |
|
\[
{}y^{\prime } = y^{2}-4 y-12
\] |
[_quadrature] |
✓ |
1.826 |
|
\[
{}y^{\prime } = y^{2}-4 y-12
\] |
[_quadrature] |
✓ |
1.763 |
|
\[
{}y^{\prime } = y^{2}-4 y-12
\] |
[_quadrature] |
✓ |
1.772 |
|
\[
{}y^{\prime } = \cos \left (y\right )
\] |
[_quadrature] |
✓ |
1.464 |
|
\[
{}y^{\prime } = \cos \left (y\right )
\] |
[_quadrature] |
✓ |
3.353 |
|
\[
{}y^{\prime } = \cos \left (y\right )
\] |
[_quadrature] |
✓ |
1.921 |
|
\[
{}y^{\prime } = \cos \left (y\right )
\] |
[_quadrature] |
✓ |
1.402 |
|
\[
{}w^{\prime } = w \cos \left (w\right )
\] |
[_quadrature] |
✓ |
0.950 |
|
\[
{}w^{\prime } = w \cos \left (w\right )
\] |
[_quadrature] |
✓ |
1.219 |
|
\[
{}w^{\prime } = w \cos \left (w\right )
\] |
[_quadrature] |
✓ |
1.320 |
|
\[
{}w^{\prime } = w \cos \left (w\right )
\] |
[_quadrature] |
✓ |
1.323 |
|
\[
{}w^{\prime } = w \cos \left (w\right )
\] |
[_quadrature] |
✓ |
1.303 |
|
\[
{}w^{\prime } = \left (1-w\right ) \sin \left (w\right )
\] |
[_quadrature] |
✓ |
4.313 |
|
\[
{}y^{\prime } = \frac {1}{y-2}
\] |
[_quadrature] |
✓ |
0.968 |
|
\[
{}v^{\prime } = -v^{2}-2 v-2
\] |
[_quadrature] |
✓ |
1.006 |
|
\[
{}w^{\prime } = 3 w^{3}-12 w^{2}
\] |
[_quadrature] |
✓ |
3.552 |
|
\[
{}y^{\prime } = 1+\cos \left (y\right )
\] |
[_quadrature] |
✓ |
1.029 |
|
\[
{}y^{\prime } = \tan \left (y\right )
\] |
[_quadrature] |
✓ |
1.083 |
|
\[
{}y^{\prime } = y \ln \left ({| y|}\right )
\] |
[_quadrature] |
✓ |
1.359 |
|
\[
{}w^{\prime } = \left (w^{2}-2\right ) \arctan \left (w\right )
\] |
[_quadrature] |
✓ |
1.694 |
|
\[
{}y^{\prime } = y^{2}-4 y+2
\] |
[_quadrature] |
✓ |
1.534 |
|
\[
{}y^{\prime } = y^{2}-4 y+2
\] |
[_quadrature] |
✓ |
1.343 |
|
\[
{}y^{\prime } = y^{2}-4 y+2
\] |
[_quadrature] |
✓ |
1.464 |
|
\[
{}y^{\prime } = y^{2}-4 y+2
\] |
[_quadrature] |
✓ |
1.525 |
|
\[
{}y^{\prime } = y^{2}-4 y+2
\] |
[_quadrature] |
✓ |
1.522 |
|
\[
{}y^{\prime } = y^{2}-4 y+2
\] |
[_quadrature] |
✓ |
1.471 |
|
\[
{}y^{\prime } = y \cos \left (\frac {\pi y}{2}\right )
\] |
[_quadrature] |
✓ |
1.188 |
|
\[
{}y^{\prime } = y-y^{2}
\] |
[_quadrature] |
✓ |
1.612 |
|
\[
{}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right )
\] |
[_quadrature] |
✓ |
1.236 |
|
\[
{}y^{\prime } = y^{3}-y^{2}
\] |
[_quadrature] |
✓ |
3.559 |
|
\[
{}y^{\prime } = \cos \left (\frac {\pi y}{2}\right )
\] |
[_quadrature] |
✓ |
2.204 |
|
\[
{}y^{\prime } = y^{2}-y
\] |
[_quadrature] |
✓ |
1.400 |
|
\[
{}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right )
\] |
[_quadrature] |
✓ |
1.230 |
|