2.2.142 Problems 14101 to 14200

Table 2.285: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14101

\[ {}y^{\prime } = \frac {y}{x -1}+x^{2} \]
i.c.

[_linear]

1.188

14102

\[ {}y^{\prime } = \frac {y}{x}+\sin \left (x^{2}\right ) \]
i.c.

[_linear]

1.796

14103

\[ {}y^{\prime } = \frac {2 y}{x}+{\mathrm e}^{x} \]
i.c.

[_linear]

1.820

14104

\[ {}y^{\prime } = y \cot \left (x \right )+\sin \left (x \right ) \]
i.c.

[_linear]

1.897

14105

\[ {}x -y y^{\prime } = 0 \]

[_separable]

3.075

14106

\[ {}y-x y^{\prime } = 0 \]

[_separable]

1.271

14107

\[ {}x^{2}-y+x y^{\prime } = 0 \]

[_linear]

1.146

14108

\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \]

[_separable]

1.921

14109

\[ {}x \left (1-y^{3}\right )-3 y^{2} y^{\prime } = 0 \]

[_separable]

2.398

14110

\[ {}y \left (2 x -1\right )+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

1.377

14111

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

0.405

14112

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

1.165

14113

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.465

14114

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.496

14115

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]
i.c.

[_linear]

2.510

14116

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

[_linear]

1.990

14117

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]
i.c.

[_linear]

2.543

14118

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

1.151

14119

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

1.158

14120

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

1.176

14121

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

1.695

14122

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

1.229

14123

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

1.716

14124

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

2.868

14125

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

3.101

14126

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

2.480

14127

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

3.056

14128

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

2.563

14129

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

2.372

14130

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

2.508

14131

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

2.625

14132

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

138.292

14133

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

17.552

14134

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

115.734

14135

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

11.371

14136

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

49.743

14137

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]
i.c.

[_quadrature]

20.224

14138

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]
i.c.

[_quadrature]

4.022

14139

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]
i.c.

[_quadrature]

99.625

14140

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.039

14141

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.798

14142

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.936

14143

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.952

14144

\[ {}y^{\prime } = \frac {x y}{y^{2}+x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.925

14145

\[ {}y^{\prime } = \frac {x y}{y^{2}+x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.095

14146

\[ {}y^{\prime } = \frac {x y}{y^{2}+x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.897

14147

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

4.363

14148

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

84.505

14149

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

7.842

14150

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

3.222

14151

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.685

14152

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.385

14153

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.521

14154

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.984

14155

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.334

14156

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

20.174

14157

\[ {}x y^{\prime \prime \prime }+x y^{\prime } = 4 \]
i.c.

[[_3rd_order, _missing_y]]

0.682

14158

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

1.561

14159

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

1.973

14160

\[ {}\sqrt {1-x}\, y^{\prime \prime }-4 y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.704

14161

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.257

14162

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.989

14163

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.903

14164

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler]]

1.169

14165

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.339

14166

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.521

14167

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.078

14168

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

2.092

14169

\[ {}y^{\prime \prime }-4 y = 31 \]
i.c.

[[_2nd_order, _missing_x]]

3.191

14170

\[ {}y^{\prime \prime }+9 y = 27 x +18 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3.226

14171

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -3 x -\frac {3}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3.049

14172

\[ {}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

0.845

14173

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

0.077

14174

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

0.082

14175

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.088

14176

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.091

14177

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.083

14178

\[ {}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

0.079

14179

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.082

14180

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \]

[[_high_order, _missing_x]]

0.087

14181

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.111

14182

\[ {}y^{\prime \prime }+\alpha y = 0 \]

[[_2nd_order, _missing_x]]

1.705

14183

\[ {}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

0.095

14184

\[ {}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.090

14185

\[ {}y^{\prime }-i y = 0 \]
i.c.

[_quadrature]

1.165

14186

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

0.174

14187

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right ) \]

[[_high_order, _missing_y]]

0.641

14188

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3+\cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.182

14189

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 \,{\mathrm e}^{x} x^{2} \]

[[_high_order, _missing_y]]

0.173

14190

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.555

14191

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.273

14192

\[ {}y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.272

14193

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.158

14194

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.155

14195

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.143

14196

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 x +4 \]
i.c.

[[_high_order, _with_linear_symmetries]]

0.146

14197

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

0.177

14198

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

0.230

14199

\[ {}y^{\prime }+2 y = 4 \]

[_quadrature]

0.199

14200

\[ {}y^{\prime \prime }-9 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.246